567 research outputs found

    Robust Rotation Synchronization via Low-rank and Sparse Matrix Decomposition

    Get PDF
    This paper deals with the rotation synchronization problem, which arises in global registration of 3D point-sets and in structure from motion. The problem is formulated in an unprecedented way as a "low-rank and sparse" matrix decomposition that handles both outliers and missing data. A minimization strategy, dubbed R-GoDec, is also proposed and evaluated experimentally against state-of-the-art algorithms on simulated and real data. The results show that R-GoDec is the fastest among the robust algorithms.Comment: The material contained in this paper is part of a manuscript submitted to CVI

    Spectral Motion Synchronization in SE(3)

    Get PDF
    This paper addresses the problem of motion synchronization (or averaging) and describes a simple, closed-form solution based on a spectral decomposition, which does not consider rotation and translation separately but works straight in SE(3), the manifold of rigid motions. Besides its theoretical interest, being the first closed form solution in SE(3), experimental results show that it compares favourably with the state of the art both in terms of precision and speed

    Video Processing with Additional Information

    Get PDF
    Cameras are frequently deployed along with many additional sensors in aerial and ground-based platforms. Many video datasets have metadata containing measurements from inertial sensors, GPS units, etc. Hence the development of better video processing algorithms using additional information attains special significance. We first describe an intensity-based algorithm for stabilizing low resolution and low quality aerial videos. The primary contribution is the idea of minimizing the discrepancy in the intensity of selected pixels between two images. This is an application of inverse compositional alignment for registering images of low resolution and low quality, for which minimizing the intensity difference over salient pixels with high gradients results in faster and better convergence than when using all the pixels. Secondly, we describe a feature-based method for stabilization of aerial videos and segmentation of small moving objects. We use the coherency of background motion to jointly track features through the sequence. This enables accurate tracking of large numbers of features in the presence of repetitive texture, lack of well conditioned feature windows etc. We incorporate the segmentation problem within the joint feature tracking framework and propose the first combined joint-tracking and segmentation algorithm. The proposed approach enables highly accurate tracking, and segmentation of feature tracks that is used in a MAP-MRF framework for obtaining dense pixelwise labeling of the scene. We demonstrate competitive moving object detection in challenging video sequences of the VIVID dataset containing moving vehicles and humans that are small enough to cause background subtraction approaches to fail. Structure from Motion (SfM) has matured to a stage, where the emphasis is on developing fast, scalable and robust algorithms for large reconstruction problems. The availability of additional sensors such as inertial units and GPS along with video cameras motivate the development of SfM algorithms that leverage these additional measurements. In the third part, we study the benefits of the availability of a specific form of additional information - the vertical direction (gravity) and the height of the camera both of which can be conveniently measured using inertial sensors, and a monocular video sequence for 3D urban modeling. We show that in the presence of this information, the SfM equations can be rewritten in a bilinear form. This allows us to derive a fast, robust, and scalable SfM algorithm for large scale applications. The proposed SfM algorithm is experimentally demonstrated to have favorable properties compared to the sparse bundle adjustment algorithm. We provide experimental evidence indicating that the proposed algorithm converges in many cases to solutions with lower error than state-of-art implementations of bundle adjustment. We also demonstrate that for the case of large reconstruction problems, the proposed algorithm takes lesser time to reach its solution compared to bundle adjustment. We also present SfM results using our algorithm on the Google StreetView research dataset, and several other datasets

    A Comparative Study of Registration Methods for RGB-D Video of Static Scenes

    Get PDF
    The use of RGB-D sensors for mapping and recognition tasks in robotics or, in general, for virtual reconstruction has increased in recent years. The key aspect of these kinds of sensors is that they provide both depth and color information using the same device. In this paper, we present a comparative analysis of the most important methods used in the literature for the registration of subsequent RGB-D video frames in static scenarios. The analysis begins by explaining the characteristics of the registration problem, dividing it into two representative applications: scene modeling and object reconstruction. Then, a detailed experimentation is carried out to determine the behavior of the different methods depending on the application. For both applications, we used standard datasets and a new one built for object reconstruction.This work has been supported by a grant from the Spanish Government, DPI2013-40534-R, University of Alicante projects GRE11-01 and a grant from the Valencian Government, GV/2013/005

    Dynamic Body VSLAM with Semantic Constraints

    Full text link
    Image based reconstruction of urban environments is a challenging problem that deals with optimization of large number of variables, and has several sources of errors like the presence of dynamic objects. Since most large scale approaches make the assumption of observing static scenes, dynamic objects are relegated to the noise modeling section of such systems. This is an approach of convenience since the RANSAC based framework used to compute most multiview geometric quantities for static scenes naturally confine dynamic objects to the class of outlier measurements. However, reconstructing dynamic objects along with the static environment helps us get a complete picture of an urban environment. Such understanding can then be used for important robotic tasks like path planning for autonomous navigation, obstacle tracking and avoidance, and other areas. In this paper, we propose a system for robust SLAM that works in both static and dynamic environments. To overcome the challenge of dynamic objects in the scene, we propose a new model to incorporate semantic constraints into the reconstruction algorithm. While some of these constraints are based on multi-layered dense CRFs trained over appearance as well as motion cues, other proposed constraints can be expressed as additional terms in the bundle adjustment optimization process that does iterative refinement of 3D structure and camera / object motion trajectories. We show results on the challenging KITTI urban dataset for accuracy of motion segmentation and reconstruction of the trajectory and shape of moving objects relative to ground truth. We are able to show average relative error reduction by a significant amount for moving object trajectory reconstruction relative to state-of-the-art methods like VISO 2, as well as standard bundle adjustment algorithms
    • …
    corecore