171 research outputs found

    Discrete Multi-modal Hashing with Canonical Views for Robust Mobile Landmark Search

    Full text link
    Mobile landmark search (MLS) recently receives increasing attention for its great practical values. However, it still remains unsolved due to two important challenges. One is high bandwidth consumption of query transmission, and the other is the huge visual variations of query images sent from mobile devices. In this paper, we propose a novel hashing scheme, named as canonical view based discrete multi-modal hashing (CV-DMH), to handle these problems via a novel three-stage learning procedure. First, a submodular function is designed to measure visual representativeness and redundancy of a view set. With it, canonical views, which capture key visual appearances of landmark with limited redundancy, are efficiently discovered with an iterative mining strategy. Second, multi-modal sparse coding is applied to transform visual features from multiple modalities into an intermediate representation. It can robustly and adaptively characterize visual contents of varied landmark images with certain canonical views. Finally, compact binary codes are learned on intermediate representation within a tailored discrete binary embedding model which preserves visual relations of images measured with canonical views and removes the involved noises. In this part, we develop a new augmented Lagrangian multiplier (ALM) based optimization method to directly solve the discrete binary codes. We can not only explicitly deal with the discrete constraint, but also consider the bit-uncorrelated constraint and balance constraint together. Experiments on real world landmark datasets demonstrate the superior performance of CV-DMH over several state-of-the-art methods

    Deep Metric Multi-View Hashing for Multimedia Retrieval

    Full text link
    Learning the hash representation of multi-view heterogeneous data is an important task in multimedia retrieval. However, existing methods fail to effectively fuse the multi-view features and utilize the metric information provided by the dissimilar samples, leading to limited retrieval precision. Current methods utilize weighted sum or concatenation to fuse the multi-view features. We argue that these fusion methods cannot capture the interaction among different views. Furthermore, these methods ignored the information provided by the dissimilar samples. We propose a novel deep metric multi-view hashing (DMMVH) method to address the mentioned problems. Extensive empirical evidence is presented to show that gate-based fusion is better than typical methods. We introduce deep metric learning to the multi-view hashing problems, which can utilize metric information of dissimilar samples. On the MIR-Flickr25K, MS COCO, and NUS-WIDE, our method outperforms the current state-of-the-art methods by a large margin (up to 15.28 mean Average Precision (mAP) improvement).Comment: Accepted by IEEE ICME 202
    • …
    corecore