316 research outputs found

    Satellite radiometric remote sensing of rainfall fields: multi-sensor retrieval techniques at geostationary scale

    No full text
    International audienceThe Microwave Infrared Combined Rainfall Algorithm (MICRA) consists in a statistical integration method using the satellite microwave-based rain-rate estimates, assumed to be accurate enough, to calibrate spaceborne infrared measurements on limited sub-regions and time windows. Rainfall retrieval is pursued at the space-time scale of typical geostationary observations, that is at a spatial resolution of few kilometers and a repetition period of few tens of minutes. The actual implementation is explained, although the basic concepts of MICRA are very general and the method is easy to be extended for considering innovative statistical techniques or measurements from additional space-borne platforms. In order to demonstrate the potentiality of MICRA, case studies over central Italy are also discussed. Finally, preliminary results of MICRA validation by ground based remote and in situ measurements are shown and a comparison with a Neural Network (NN) based technique is briefly illustrated

    Bias adjustment of infrared-based rainfall estimation using Passive Microwave satellite rainfall data

    Get PDF
    This study explores using Passive Microwave (PMW) rainfall estimation for spatial and temporal adjustment of Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System(PERSIANN-CCS). The PERSIANN-CCS algorithm collects information from infrared images to estimate rainfall. PERSIANN-CCS is one of the algorithms used in the IntegratedMultisatellite Retrievals for GPM (Global Precipitation Mission) estimation for the time period PMW rainfall estimations are limited or not available. Continued improvement of PERSIANN-CCS will support Integrated Multisatellite Retrievals for GPM for current as well as retrospective estimations of global precipitation. This study takes advantage of the high spatial and temporal resolution of GEO-based PERSIANN-CCS estimation and the more effective, but lower sample frequency, PMW estimation. The Probability Matching Method (PMM) was used to adjust the rainfall distribution of GEO-based PERSIANN-CCS toward that of PMW rainfall estimation. The results show that a significant improvement of global PERSIANN-CCS rainfall estimation is obtained

    Artificial neural-network technique for precipitation nowcasting from satellite imagery

    Get PDF
    The term nowcasting reflects the need of timely and accurate predictions of risky situations related to the development of severe meteorological events. In this work the objective is the very short term prediction of the rainfall field from geostationary satellite imagery entirely based on neural network approach. The very short-time prediction (or nowcasting) process consists of two steps: first, the infrared radiance field measured from geostationary satellite (Meteosat 7) is projected ahead in time (30 min or 1 h); secondly, the projected radiances are used to estimate the rainfall field by means of a calibrated microwave-based combined algorithm. The methodology is discussed and its accuracy is quantified by means of error indicators. An application to a satellite observation of a rainfall event over Central Italy is finally shown and evaluated

    Ensemble representation of uncertainty in Lagrangian satellite rainfall estimates

    Get PDF
    A new algorithm called Lagrangian Simulation (LSIM) has been developed that enables the interpolation uncertainty present in Lagrangian satellite rainfall algorithms such as the Climate Prediction Center (CPC) morphing technique (CMORPH) to be characterized using an ensemble product. The new algorithm generates ensemble sequences of rainfall fields conditioned on multiplatform multisensor microwave satellite data, demonstrating a conditional simulation approach that overcomes the problem of discontinuous uncertainty fields inherent in this type of product. Each ensemble member is consistent with the information present in the satellite data, while variation between members is indicative of uncertainty in the rainfall retrievals. LSIM is based on the combination of a Markov weather generator, conditioned on both previous and subsequent microwave measurements, and a global optimization procedure that uses simulated annealing to constrain the generated rainfall fields to display appropriate spatial structures. The new algorithm has been validated over a region of the continental United States and has been shown to provide reliable estimates of both point uncertainty distributions and wider spatiotemporal structures

    LMODEL: A satellite precipitation methodology using cloud development modeling. Part I: Algorithm construction and calibration

    Get PDF
    The Lagrangian Model (LMODEL) is a new multisensor satellite rainfall monitoring methodology based on the use of a conceptual cloud-development model that is driven by geostationary satellite imagery and is locally updated using microwave-based rainfall measurements from low earth-orbiting platforms. This paper describes the cloud development model and updating procedures; the companion paper presents model validation results. The model uses single-band thermal infrared geostationary satellite imagery to characterize cloud motion, growth, and dispersal at high spatial resolution (similar to 4 km). These inputs drive a simple, linear, semi-Lagrangian, conceptual cloud mass balance model, incorporating separate representations of convective and stratiform processes. The model is locally updated against microwave satellite data using a two-stage process that scales precipitable water fluxes into the model and then updates model states using a Kalman filter. Model calibration and updating employ an empirical rainfall collocation methodology designed to compensate for the effects of measurement time difference, geolocation error, cloud parallax, and rainfall shear

    Skin Temperature Analysis and Bias Correction in a Coupled Land-Atmosphere Data Assimilation System

    Get PDF
    In an initial investigation, remotely sensed surface temperature is assimilated into a coupled atmosphere/land global data assimilation system, with explicit accounting for biases in the model state. In this scheme, an incremental bias correction term is introduced in the model's surface energy budget. In its simplest form, the algorithm estimates and corrects a constant time mean bias for each gridpoint; additional benefits are attained with a refined version of the algorithm which allows for a correction of the mean diurnal cycle. The method is validated against the assimilated observations, as well as independent near-surface air temperature observations. In many regions, not accounting for the diurnal cycle of bias caused degradation of the diurnal amplitude of background model air temperature. Energy fluxes collected through the Coordinated Enhanced Observing Period (CEOP) are used to more closely inspect the surface energy budget. In general, sensible heat flux is improved with the surface temperature assimilation, and two stations show a reduction of bias by as much as 30 Wm(sup -2) Rondonia station in Amazonia, the Bowen ratio changes direction in an improvement related to the temperature assimilation. However, at many stations the monthly latent heat flux bias is slightly increased. These results show the impact of univariate assimilation of surface temperature observations on the surface energy budget, and suggest the need for multivariate land data assimilation. The results also show the need for independent validation data, especially flux stations in varied climate regimes
    • …
    corecore