123 research outputs found

    Quasi-Splines and their moduli

    Full text link
    We study what we call quasi-spline sheaves over locally Noetherian schemes. This is done with the intention of considering splines from the point of view of moduli theory. In other words, we study the way in which certain objects that arise in the theory of splines can be made to depend on parameters. In addition to quasi-spline sheaves, we treat ideal difference-conditions, and individual quasi- splines. Under certain hypotheses each of these types of objects admits a fine moduli scheme. The moduli of quasi-spline sheaves is proper, and there is a natural compactification of the moduli of ideal difference-conditions. We include some speculation on the uses of these moduli in the theory of splines and topology, and an appendix with a treatment of the Billera-Rose homogenization in scheme theoretic language

    Extensions to OpenGL for CAGD.

    Get PDF
    Many computer graphic API’s, including OpenGL, emphasize modeling with rectangular patches, which are especially useful in Computer Aided Geomeric Design (CAGD). However, not all shapes are rectangular; some are triangular or more complex. This paper extends the OpenGL library to support the modeling of triangular patches, Coons patches, and Box-splines patches. Compared with the triangular patch created from degenerate rectangular Bezier patch with the existing functions provided by OpenGL, the triangular Bezier patches can be used in certain design situations and allow designers to achieve high-quality results that are less CPU intense and require less storage space. The addition of Coons patches and Box splines to the OpenGL library also give it more functionality. Both patch types give CAGD users more flexibility in designing surfaces. A library for all three patch types was developed as an addition to OpenGL

    Quasi-Interpolation in a Space of C 2 Sextic Splines over Powell–Sabin Triangulations

    Get PDF
    In this work, we study quasi-interpolation in a space of sextic splines defined over Powell– Sabin triangulations. These spline functions are of class C 2 on the whole domain but fourth-order regularity is required at vertices and C 3 regularity is imposed across the edges of the refined triangulation and also at the interior point chosen to define the refinement. An algorithm is proposed to define the Powell–Sabin triangles with a small area and diameter needed to construct a normalized basis. Quasi-interpolation operators which reproduce sextic polynomials are constructed after deriving Marsden’s identity from a more explicit version of the control polynomials introduced some years ago in the literature. Finally, some tests show the good performance of these operators.Erasmus+ International Dimension programme, European CommissionPAIDI programme, Junta de Andalucía, Spai

    On multivariate polynomials in Bernstein–Bézier form and tensor algebra

    Get PDF
    AbstractThe Bernstein–Bézier representation of polynomials is a very useful tool in computer aided geometric design. In this paper we make use of (multilinear) tensors to describe and manipulate multivariate polynomials in their Bernstein–Bézier form. As an application we consider Hermite interpolation with polynomials and splines

    Dimensions of spline spaces over unconstricted triangulations

    Get PDF
    AbstractOne of the puzzlingly hard problems in Computer Aided Geometric Design and Approximation Theory is that of finding the dimension of the spline space of Cr piecewise degree n polynomials over a 2D triangulation Ω. We denote such spaces by Snr(Ω). In this note, we restrict Ω to have a special structure, namely to be unconstricted. This will allow for several exact dimension formulas

    Near-best C2C^2 quartic spline quasi-interpolants on type-6 tetrahedral partitions of bounded domains

    Full text link
    In this paper, we present new quasi-interpolating spline schemes defined on 3D bounded domains, based on trivariate C2C^2 quartic box splines on type-6 tetrahedral partitions and with approximation order four. Such methods can be used for the reconstruction of gridded volume data. More precisely, we propose near-best quasi-interpolants, i.e. with coefficient functionals obtained by imposing the exactness of the quasi-interpolants on the space of polynomials of total degree three and minimizing an upper bound for their infinity norm. In case of bounded domains the main problem consists in the construction of the coefficient functionals associated with boundary generators (i.e. generators with supports not completely inside the domain), so that the functionals involve data points inside or on the boundary of the domain. We give norm and error estimates and we present some numerical tests, illustrating the approximation properties of the proposed quasi-interpolants, and comparisons with other known spline methods. Some applications with real world volume data are also provided.Comment: In the new version of the paper, we have done some minor revisions with respect to the previous version, CALCOLO, Published online: 10 October 201
    • …
    corecore