3,640 research outputs found

    Multivariate Approximations to Portfolio Return Distribution

    Get PDF
    This article proposes a three-step procedure to estimate portfolio return distributions under the multivariate Gram-Charlier (MGC) distribution. The method combines quasi maximum likelihood (QML) estimation for conditional means and variances and the method of moments (MM) estimation for the rest of the density parameters, including the correlation coefficients. The procedure involves consistent estimates even under density misspecification and solves the so-called ‘curse of dimensionality’ of multivariate modelling. Furthermore, the use of a MGC distribution represents a flexible and general approximation to the true distribution of portfolio returns and accounts for all its empirical regularities. An application of such procedure is performed for a portfolio composed of three European indices as an illustration. The MM estimation of the MGC (MGC-MM) is compared with the traditional maximum likelihood of both the MGC and multivariate Student’s t (benchmark) densities. A simulation on Value-at-Risk (VaR) performance for an equally weighted portfolio at 1% and 5% confidence indicates that the MGC-MM method provides reasonable approximations to the true empirical VaR. Therefore, the procedure seems to be a useful tool for risk managers and practitioners

    Bounds and approximations for sums of dependent log-elliptical random variables.

    Get PDF
    Dhaene, Denuit, Goovaerts, Kaas and Vyncke [Dhaene, J., Denuit, M., Goovaerts, M.J., Kaas, R., Vyncke,D., 2002a. The concept of comonotonicity in actuarial science and finance: theory. Insurance Math.Econom. 31 (1), 3-33; Dhaene, J., Denuit, M., Goovaerts, M.J., Kaas, R., Vyncke, D., 2002b. The concept of comonotonicity in actuarial science and finance: Applications. Insurance Math. Econom. 31 (2), 133-161]have studied convex bounds for a sum of dependent random variables and applied these to sums of lognormal random variables. In particular, they have shown how these convex bounds can be used to derive closed-form approximations for several of the risk measures of such a sum. In this paper we investigate to which extent their general results on convex bounds can also be applied to sums of log-elliptical random variables which incorporate sums of log-normals as a special case. Firstly, we show that unlike the log-normal case, for general sums of log-ellipticals the convex lower bound does no longer result in closed-form approximations for the different risk measures. Secondly, we demonstrate how instead the weaker stop-loss order can be used to derive such closed-form approximations.We also present numerical examples to show the accuracy of the proposed approximations.

    Copulas in finance and insurance

    Get PDF
    Copulas provide a potential useful modeling tool to represent the dependence structure among variables and to generate joint distributions by combining given marginal distributions. Simulations play a relevant role in finance and insurance. They are used to replicate efficient frontiers or extremal values, to price options, to estimate joint risks, and so on. Using copulas, it is easy to construct and simulate from multivariate distributions based on almost any choice of marginals and any type of dependence structure. In this paper we outline recent contributions of statistical modeling using copulas in finance and insurance. We review issues related to the notion of copulas, copula families, copula-based dynamic and static dependence structure, copulas and latent factor models and simulation of copulas. Finally, we outline hot topics in copulas with a special focus on model selection and goodness-of-fit testing
    corecore