227 research outputs found

    An Unsupervised Channel Selection Method for SSVEP-based Brain Computer Interfaces

    Get PDF
    Brain-computer interfaces (BCIs) provide an alternative communication channel for people with motor deficits that prevent normal communication. The underlying premise of a BCI is that a neuroimaging process such as electroencephalography (EEG) can be used to measure the user’s brain activity as signals. The obtained signals are analyzed to determine the user’s intended actions and a computer system can be used to replace voluntary muscle activity as a means of communication. The information transfer rate (ITR) of an algorithm used for determining the user’s intentions greatly affects the perceived practicality of the BCI system. Such algorithms are divided into two main categories, supervised and unsupervised. While the former achieves higher ITR, the latter is most useful when the user is unable to be involved in the calibration process of the BCI system. In our paper, we introduce an unsupervised algorithm for steady-state visual evoked potential (SSVEP)-based BCIs. Our algorithm works in three steps: (i) it selects multiple sets of electroencephalogram channels, then (ii) applies a feature extraction method to each one of these channel sets. As its final step, (iii) it combines the extracted features from these channel sets by performing a majority vote, yielding a classification. We evaluate the ITR attained using our proposed method on a dataset of 35 subjects using three different feature extraction methods. We then compare these results to existing methods in the literature that use a single channel set without a majority vote. The proposed method indicates an improvement for at least 7 subjects

    A Brief Exposition on Brain-Computer Interface

    Get PDF
    Brain-Computer Interface is a technology that records brain signals and translates them into useful commands to operate a drone or a wheelchair. Drones are used in various applications such as aerial operations, where pilot’s presence is impossible. The BCI can also be used for patients suffering from brain diseases who lose their body control and are unable to move to satisfy their basic needs. By taking advantage of BCI and drone technology, algorithms for Mind-Controlled Unmanned Aerial System can be developed. This paper deals with the classification of BCI & UAV, methodologies of BCI, the framework of BCI, neuro-imaging methods, BCI headset options, BCI platforms, electrode types & their placement, and the result of feature extraction technique (FFT) with 72.5% accuracy

    A Novel Approach Of Independent Brain-computer Interface Based On SSVEP

    Get PDF
    Durante os últimos dez anos, as Interfaces Cérebro Computador (ICC) baseadas em Potenciais Evocados Visuais de Regime Permanente (SSVEP) têm chamado a atenção de muitos pesquisadores devido aos resultados promissores e as altas taxas de precisão atingidas. Este tipo de ICC permite que pessoas com dificuldades motoras severas possam se comunicar com o mundo exterior através da modulação da atenção visual a luzes piscantes com frequência determinada. Esta Tese de Doutorado tem o intuito de desenvolver um novo enfoque dentro das chamadas ICC Independentes, nas quais os usuários não necessitam executar tarefas neuromusculares para seleção visual de objetivos específicos, característica que a distingue das tradicionais ICCs-SSVEP. Assim, pessoas com difculdades motoras severas, como pessoas com Esclerose Lateral Amiotrófca (ELA), contam com uma nova alternativa de se comunicar através de sinais cerebrais. Diversas contribuições foram realizadas neste trabalho, como, por exemplo, melhoria do algoritmo extrator de características, denominado Índice de Sincronização Multivariável (ou MSI, do Inglês), para a detecção de potenciais evocados; desenvolvimento de um novo método de detecção de potenciais evocados através da correlação entre modelos multidimensionais (tensores); o desenvolvimento do primeiro estudo sobre a influência de estímulos coloridos na detecção de SSVEPs usando LEDs; a aplicação do conceito de Compressão na detecção de SSVEPs; e, fnalmente, o desenvolvimento de uma nova ICC independente que utiliza o enfoque de Percepção Fundo-Figura (ou FGP, do Inglês)

    A new multivariate empirical mode decomposition method for improving the performance of SSVEP-based brain–computer interface

    Get PDF
    Objective: Accurate and efficient detection of steady-state visual evoked potentials (SSVEP) in electroencephalogram (EEG) is essential for the related brain–computer interface (BCI) applications. Approach: Although the canonical correlation analysis (CCA) has been applied extensively and successfully to SSVEP recognition, the spontaneous EEG activities and artifacts that often occur during data recording can deteriorate the recognition performance. Therefore, it is meaningful to extract a few frequency sub-bands of interest to avoid or reduce the influence of unrelated brain activity and artifacts. This paper presents an improved method to detect the frequency component associated with SSVEP using multivariate empirical mode decomposition (MEMD) and CCA (MEMD-CCA). EEG signals from nine healthy volunteers were recorded to evaluate the performance of the proposed method for SSVEP recognition. Main results: We compared our method with CCA and temporally local multivariate synchronization index (TMSI). The results suggest that the MEMD-CCA achieved significantly higher accuracy in contrast to standard CCA and TMSI. It gave the improvements of 1.34%, 3.11%, 3.33%, 10.45%, 15.78%, 18.45%, 15.00% and 14.22% on average over CCA at time windows from 0.5 s to 5 s and 0.55%, 1.56%, 7.78%, 14.67%, 13.67%, 7.33% and 7.78% over TMSI from 0.75 s to 5 s. The method outperformed the filter-based decomposition (FB), empirical mode decomposition (EMD) and wavelet decomposition (WT) based CCA for SSVEP recognition. Significance: The results demonstrate the ability of our proposed MEMD-CCA to improve the performance of SSVEP-based BCI

    Advancing the detection of steady-state visual evoked potentials in brain-computer interfaces

    Get PDF
    © 2016 IOP Publishing Ltd. Objective. Spatial filtering has proved to be a powerful pre-processing step in detection of steady-state visual evoked potentials and boosted typical detection rates both in offline analysis and online SSVEP-based brain-computer interface applications. State-of-the-art detection methods and the spatial filters used thereby share many common foundations as they all build upon the second order statistics of the acquired Electroencephalographic (EEG) data, that is, its spatial autocovariance and cross-covariance with what is assumed to be a pure SSVEP response. The present study aims at highlighting the similarities and differences between these methods. Approach. We consider the canonical correlation analysis (CCA) method as a basis for the theoretical and empirical (with real EEG data) analysis of the state-of-the-art detection methods and the spatial filters used thereby. We build upon the findings of this analysis and prior research and propose a new detection method (CVARS) that combines the power of the canonical variates and that of the autoregressive spectral analysis in estimating the signal and noise power levels. Main results. We found that the multivariate synchronization index method and the maximum contrast combination method are variations of the CCA method. All three methods were found to provide relatively unreliable detections in low signal-to-noise ratio (SNR) regimes. CVARS and the minimum energy combination methods were found to provide better estimates for different SNR levels. Significance. Our theoretical and empirical results demonstrate that the proposed CVARS method outperforms other state-of-the-art detection methods when used in an unsupervised fashion. Furthermore, when used in a supervised fashion, a linear classifier learned from a short training session is able to estimate the hidden user intention, including the idle state (when the user is not attending to any stimulus), rapidly, accurately and reliably

    Brain–Machine Interface and Visual Compressive Sensing-Based Teleoperation Control of an Exoskeleton Robot

    Get PDF
    This paper presents a teleoperation control for an exoskeleton robotic system based on the brain-machine interface and vision feedback. Vision compressive sensing, brain-machine reference commands, and adaptive fuzzy controllers in joint-space have been effectively integrated to enable the robot performing manipulation tasks guided by human operator's mind. First, a visual-feedback link is implemented by a video captured by a camera, allowing him/her to visualize the manipulator's workspace and movements being executed. Then, the compressed images are used as feedback errors in a nonvector space for producing steady-state visual evoked potentials electroencephalography (EEG) signals, and it requires no prior information on features in contrast to the traditional visual servoing. The proposed EEG decoding algorithm generates control signals for the exoskeleton robot using features extracted from neural activity. Considering coupled dynamics and actuator input constraints during the robot manipulation, a local adaptive fuzzy controller has been designed to drive the exoskeleton tracking the intended trajectories in human operator's mind and to provide a convenient way of dynamics compensation with minimal knowledge of the dynamics parameters of the exoskeleton robot. Extensive experiment studies employing three subjects have been performed to verify the validity of the proposed method

    Hybrid Brain-Computer Interface Systems: Approaches, Features, and Trends

    Get PDF
    Brain-computer interface (BCI) is an emerging field, and an increasing number of BCI research projects are being carried globally to interface computer with human using EEG for useful operations in both healthy and locked persons. Although several methods have been used to enhance the BCI performance in terms of signal processing, noise reduction, accuracy, information transfer rate, and user acceptability, the effective BCI system is still in the verge of development. So far, various modifications on single BCI systems as well as hybrid are done and the hybrid BCIs have shown increased but insufficient performance. Therefore, more efficient hybrid BCI models are still under the investigation by different research groups. In this review chapter, single BCI systems are briefly discussed and more detail discussions on hybrid BCIs, their modifications, operations, and performances with comparisons in terms of signal processing approaches, applications, limitations, and future scopes are presented
    corecore