5,045 research outputs found

    Multilabel Consensus Classification

    Full text link
    In the era of big data, a large amount of noisy and incomplete data can be collected from multiple sources for prediction tasks. Combining multiple models or data sources helps to counteract the effects of low data quality and the bias of any single model or data source, and thus can improve the robustness and the performance of predictive models. Out of privacy, storage and bandwidth considerations, in certain circumstances one has to combine the predictions from multiple models or data sources to obtain the final predictions without accessing the raw data. Consensus-based prediction combination algorithms are effective for such situations. However, current research on prediction combination focuses on the single label setting, where an instance can have one and only one label. Nonetheless, data nowadays are usually multilabeled, such that more than one label have to be predicted at the same time. Direct applications of existing prediction combination methods to multilabel settings can lead to degenerated performance. In this paper, we address the challenges of combining predictions from multiple multilabel classifiers and propose two novel algorithms, MLCM-r (MultiLabel Consensus Maximization for ranking) and MLCM-a (MLCM for microAUC). These algorithms can capture label correlations that are common in multilabel classifications, and optimize corresponding performance metrics. Experimental results on popular multilabel classification tasks verify the theoretical analysis and effectiveness of the proposed methods

    An Experimental Evaluation of the Computational Cost of a DPI Traffic Classifier

    Get PDF
    A common belief in the scientific community is that traffic classifiers based on deep packet inspection (DPI) are far more expensive in terms of computational complexity compared to statistical classifiers. In this paper we counter this notion by defining accurate models for a deep packet inspection classifier and a statistical one based on support vector machines, and by evaluating their actual processing costs through experimental analysis. The results suggest that, contrary to the common belief, a DPI classifier and an SVM-based one can have comparable computational costs. Although much work is left to prove that our results apply in more general cases, this preliminary analysis is a first indication of how DPI classifiers might not be as computationally complex, compared to other approaches, as we previously though
    corecore