2,635 research outputs found

    Single-trial multiwavelet coherence in application to neurophysiological time series

    Get PDF
    A method of single-trial coherence analysis is presented, through the application of continuous muldwavelets. Multiwavelets allow the construction of spectra and bivariate statistics such as coherence within single trials. Spectral estimates are made consistent through optimal time-frequency localization and smoothing. The use of multiwavelets is considered along with an alternative single-trial method prevalent in the literature, with the focus being on statistical, interpretive and computational aspects. The multiwavelet approach is shown to possess many desirable properties, including optimal conditioning, statistical descriptions and computational efficiency. The methods. are then applied to bivariate surrogate and neurophysiological data for calibration and comparative study. Neurophysiological data were recorded intracellularly from two spinal motoneurones innervating the posterior,biceps muscle during fictive locomotion in the decerebrated cat

    Analytical methods and experimental approaches for electrophysiological studies of brain oscillations

    Get PDF
    Brain oscillations are increasingly the subject of electrophysiological studies probing their role in the functioning and dysfunction of the human brain. In recent years this research area has seen rapid and significant changes in the experimental approaches and analysis methods. This article reviews these developments and provides a structured overview of experimental approaches, spectral analysis techniques and methods to establish relationships between brain oscillations and behaviour

    Typical and aberrant functional brain flexibility: lifespan development and aberrant organization in traumatic brain injury and dyslexia

    Get PDF
    Intrinsic functional connectivity networks derived from different neuroimaging methods and connectivity estimators have revealed robust developmental trends linked to behavioural and cognitive maturation. The present study employed a dynamic functional connectivity approach to determine dominant intrinsic coupling modes in resting-state neuromagnetic data from 178 healthy participants aged 8–60 years. Results revealed significant developmental trends in three types of dominant intra- and inter-hemispheric neuronal population interactions (amplitude envelope, phase coupling, and phase-amplitude synchronization) involving frontal, temporal, and parieto-occipital regions. Multi-class support vector machines achieved 89% correct classification of participants according to their chronological age using dynamic functional connectivity indices. Moreover, systematic temporal variability in functional connectivity profiles, which was used to empirically derive a composite flexibility index, displayed an inverse U-shaped curve among healthy participants. Lower flexibility values were found among age-matched children with reading disability and adults who had suffered mild traumatic brain injury. The importance of these results for normal and abnormal brain development are discussed in light of the recently proposed role of cross-frequency interactions in the fine-grained coordination of neuronal population activity

    International Federation of Clinical Neurophysiology (IFCN) – EEG research workgroup: Recommendations on frequency and topographic analysis of resting state EEG rhythms. Part 1: Applications in clinical research studies

    Get PDF
    In 1999, the International Federation of Clinical Neurophysiology (IFCN) published “IFCN Guidelines for topographic and frequency analysis of EEGs and EPs” (Nuwer et al., 1999). Here a Workgroup of IFCN experts presents unanimous recommendations on the following procedures relevant for the topographic and frequency analysis of resting state EEGs (rsEEGs) in clinical research defined as neurophysiological experimental studies carried out in neurological and psychiatric patients: (1) recording of rsEEGs (environmental conditions and instructions to participants; montage of the EEG electrodes; recording settings); (2) digital storage of rsEEG and control data; (3) computerized visualization of rsEEGs and control data (identification of artifacts and neuropathological rsEEG waveforms); (4) extraction of “synchronization” features based on frequency analysis (band-pass filtering and computation of rsEEG amplitude/power density spectrum); (5) extraction of “connectivity” features based on frequency analysis (linear and nonlinear measures); (6) extraction of “topographic” features (topographic mapping; cortical source mapping; estimation of scalp current density and dura surface potential; cortical connectivity mapping), and (7) statistical analysis and neurophysiological interpretation of those rsEEG features. As core outcomes, the IFCN Workgroup endorsed the use of the most promising “synchronization” and “connectivity” features for clinical research, carefully considering the limitations discussed in this paper. The Workgroup also encourages more experimental (i.e. simulation studies) and clinical research within international initiatives (i.e., shared software platforms and databases) facing the open controversies about electrode montages and linear vs. nonlinear and electrode vs. source levels of those analyses

    Generalized time-frequency coherency for assessing neural interactions in electrophysiological recordings

    Get PDF
    Time-frequency coherence has been widely used to quantify statistical dependencies in bivariate data and has proven to be vital for the study of neural interactions in electrophysiological recordings. Conventional methods establish time-frequency coherence by smoothing the cross and power spectra using identical smoothing procedures. Smoothing entails a trade-off between time-frequency resolution and statistical consistency and is critical for detecting instantaneous coherence in single-trial data. Here, we propose a generalized method to estimate time-frequency coherency by using different smoothing procedures for the cross spectra versus power spectra. This novel method has an improved trade-off between time resolution and statistical consistency compared to conventional methods, as verified by two simulated data sets. The methods are then applied to single-trial surface encephalography recorded from human subjects for comparative purposes. Our approach extracted robust alpha- and gamma-band synchronization over the visual cortex that was not detected by conventional methods, demonstrating the efficacy of this method

    Review of the methods of determination of directed connectivity from multichannel data

    Get PDF
    The methods applied for estimation of functional connectivity from multichannel data are described with special emphasis on the estimators of directedness such as directed transfer function (DTF) and partial directed coherence. These estimators based on multivariate autoregressive model are free of pitfalls connected with application of bivariate measures. The examples of applications illustrating the performance of the methods are given. Time-varying estimators of directedness: short-time DTF and adaptive methods are presented

    Functional Source Separation for EEG-fMRI Fusion: Application to Steady-State Visual Evoked Potentials

    Get PDF
    Neurorobotics is one of the most ambitious fields in robotics, driving integration of interdisciplinary data and knowledge. One of the most productive areas of interdisciplinary research in this area has been the implementation of biologically-inspired mechanisms in the development of autonomous systems. Specifically, enabling such systems to display adaptive behavior such as learning from good and bad outcomes, has been achieved by quantifying and understanding the neural mechanisms of the brain networks mediating adaptive behaviors in humans and animals. For example, associative learning from aversive or dangerous outcomes is crucial for an autonomous system, to avoid dangerous situations in the future. A body of neuroscience research has suggested that the neurocomputations in the human brain during associative learning involve re-shaping of sensory responses. The nature of these adaptive changes in sensory processing during learning however are not yet well enough understood to be readily implemented into on-board algorithms for robotics application. Toward this overall goal, we record the simultaneous electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI), characterizing one candidate mechanism, i.e., large-scale brain oscillations. The present report examines the use of Functional Source Separation (FSS) as an optimization step in EEG-fMRI fusion that harnesses timing information to constrain the solutions that satisfy physiological assumptions. We applied this approach to the voxel-wise correlation of steady-state visual evoked potential (ssVEP) amplitude and blood oxygen level-dependent imaging (BOLD), across both time series. The results showed the benefit of FSS for the extraction of robust ssVEP signals during simultaneous EEG-fMRI recordings. Applied to data from a 3-phase aversive conditioning paradigm, the correlation maps across the three phases (habituation, acquisition, extinction) show converging results, notably major overlapping areas in both primary and extended visual cortical regions, including calcarine sulcus, lingual cortex, and cuneus. In addition, during the acquisition phase when aversive learning occurs, we observed additional correlations between ssVEP and BOLD in the anterior cingulate cortex (ACC) as well as the precuneus and superior temporal gyrus

    Untangling cross-frequency coupling in neuroscience

    Full text link
    Cross-frequency coupling (CFC) has been proposed to coordinate neural dynamics across spatial and temporal scales. Despite its potential relevance for understanding healthy and pathological brain function, the standard CFC analysis and physiological interpretation come with fundamental problems. For example, apparent CFC can appear because of spectral correlations due to common non-stationarities that may arise in the total absence of interactions between neural frequency components. To provide a road map towards an improved mechanistic understanding of CFC, we organize the available and potential novel statistical/modeling approaches according to their biophysical interpretability. While we do not provide solutions for all the problems described, we provide a list of practical recommendations to avoid common errors and to enhance the interpretability of CFC analysis.Comment: 47 pages, 12 figures, including supplementary materia
    corecore