6 research outputs found

    A REVIEW ON MULTIPLE-FEATURE-BASED ADAPTIVE SPARSE REPRESENTATION (MFASR) AND OTHER CLASSIFICATION TYPES

    Get PDF
    A new technique Multiple-feature-based adaptive sparse representation (MFASR) has been demonstrated for Hyperspectral Images (HSI's) classification. This method involves mainly in four steps at the various stages. The spectral and spatial information reflected from the original Hyperspectral Images with four various features. A shape adaptive (SA) spatial region is obtained in each pixel region at the second step. The algorithm namely sparse representation has applied to get the coefficients of sparse for each shape adaptive region in the form of matrix with multiple features. For each test pixel, the class label is determined with the help of obtained coefficients. The performances of MFASR have much better classification results than other classifiers in the terms of quantitative and qualitative percentage of results. This MFASR will make benefit of strong correlations that are obtained from different extracted features and this make use of effective features and effective adaptive sparse representation. Thus, the very high classification performance was achieved through this MFASR technique

    Detection of pathologies in retina digital images an empirical mode decomposition approach

    Get PDF
    Accurate automatic detection of pathologies in retina digital images offers a promising approach in clinicalapplications. This thesis employs the discrete wavelet transform (DWT) and empirical mode decomposition (EMD) to extract six statistical textural features from retina digital images. The statistical features are the mean, standard deviation, smoothness, third moment, uniformity, and entropy. The purpose is to classify normal and abnormal images. Five different pathologies are considered. They are Artery sheath (Coat’s disease), blot hemorrhage, retinal degeneration (circinates), age-related macular degeneration (drusens), and diabetic retinopathy (microaneurysms and exudates). Four classifiers are employed; including support vector machines (SVM), quadratic discriminant analysis (QDA), k-nearest neighbor algorithm (k-NN), and probabilistic neural networks (PNN). For each experiment, ten random folds are generated to perform cross-validation tests. In order to assess the performance of the classifiers, the average and standard deviation of the correct recognition rate, sensitivity and specificity are computed for each simulation. The experimental results highlight two main conclusions. First, they show the outstanding performance of EMD over DWT with all classifiers. Second, they demonstrate the superiority of the SVM classifier over QDA, k-NN, and PNN. Finally, principal component analysis (PCA) was employed to reduce the number of features in hope to improve the accuracy of classifiers. We find that there is no general and significant improvement of the performance, however. In sum, the EMD-SVM system provides a promising approach for the detection of pathologies in digital retina

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Temperature aware power optimization for multicore floating-point units

    Full text link

    Non-Standard Imaging Techniques

    Get PDF
    The first objective of the thesis is to investigate the problem of reconstructing a small-scale object (a few millimeters or smaller) in 3D. In Chapter 3, we show how this problem can be solved effectively by a new multifocus multiview 3D reconstruction procedure which includes a new Fixed-Lens multifocus image capture and a calibrated image registration technique using analytic homography transformation. The experimental results using the real and synthetic images demonstrate the effectiveness of the proposed solutions by showing that both the fixed-lens image capture and multifocus stacking with calibrated image alignment significantly reduce the errors in the camera poses and produce more complete 3D reconstructed models as compared with those by the conventional moving lens image capture and multifocus stacking. The second objective of the thesis is modelling the dual-pixel (DP) camera. In Chapter 4, to understand the potential of the DP sensor for computer vision applications, we study the formation of the DP pair which links the blur and the depth information. A mathematical DP model is proposed which can benefit depth estimation by the blur. These explorations motivate us to propose an end-to-end DDDNet (DP-based Depth and Deblur Network) to jointly estimate the depth and restore the image . Moreover, we define a reblur loss, which reflects the relationship of the DP image formation process with depth information, to regularize our depth estimate in training. To meet the requirement of a large amount of data for learning, we propose the first DP image simulator which allows us to create datasets with DP pairs from any existing RGBD dataset. As a side contribution, we collect a real dataset for further research. Extensive experimental evaluation on both synthetic and real datasets shows that our approach achieves competitive performance compared to state-of-the-art approaches. Another (third) objective of this thesis is to tackle the multifocus image fusion problem, particularly for long multifocus image sequences. Multifocus image stacking/fusion produces an in-focus image of a scene from a number of partially focused images of that scene in order to extend the depth of field. One of the limitations of the current state of the art multifocus fusion methods is not considering image registration/alignment before fusion. Consequently, fusing unregistered multifocus images produces an in-focus image containing misalignment artefacts. In Chapter 5, we propose image registration by projective transformation before fusion to remove the misalignment artefacts. We also propose a method based on 3D deconvolution to retrieve the in-focus image by formulating the multifocus image fusion problem as a 3D deconvolution problem. The proposed method achieves superior performance compared to the state of the art methods. It is also shown that, the proposed projective transformation for image registration can improve the quality of the fused images. Moreover, we implement a multifocus simulator to generate synthetic multifocus data from any RGB-D dataset. The fourth objective of this thesis is to explore new ways to detect the polarization state of light. To achieve the objective, in Chapter 6, we investigate a new optical filter namely optical rotation filter for detecting the polarization state with a fewer number of images. The proposed method can estimate polarization state using two images, one with the filter and another without. The accuracy of estimating the polarization parameters using the proposed method is almost similar to that of the existing state of the art method. In addition, the feasibility of detecting the polarization state using only one RGB image captured with the optical rotation filter is also demonstrated by estimating the image without the filter from the image with the filter using a generative adversarial network
    corecore