107 research outputs found

    Artifact Removal Methods in EEG Recordings: A Review

    Get PDF
    To obtain the correct analysis of electroencephalogram (EEG) signals, non-physiological and physiological artifacts should be removed from EEG signals. This study aims to give an overview on the existing methodology for removing physiological artifacts, e.g., ocular, cardiac, and muscle artifacts. The datasets, simulation platforms, and performance measures of artifact removal methods in previous related research are summarized. The advantages and disadvantages of each technique are discussed, including regression method, filtering method, blind source separation (BSS), wavelet transform (WT), empirical mode decomposition (EMD), singular spectrum analysis (SSA), and independent vector analysis (IVA). Also, the applications of hybrid approaches are presented, including discrete wavelet transform - adaptive filtering method (DWT-AFM), DWT-BSS, EMD-BSS, singular spectrum analysis - adaptive noise canceler (SSA-ANC), SSA-BSS, and EMD-IVA. Finally, a comparative analysis for these existing methods is provided based on their performance and merits. The result shows that hybrid methods can remove the artifacts more effectively than individual methods

    Turning Tangent Empirical Mode Decomposition: A Framework for Mono- and Multivariate Signals.

    No full text
    International audienceA novel Empirical Mode Decomposition (EMD) algorithm, called 2T-EMD, for both mono- and multivariate signals is proposed in this paper. It differs from the other approaches by its computational lightness and its algorithmic simplicity. The method is essentially based on a redefinition of the signal mean envelope, computed thanks to new characteristic points, which offers the possibility to decompose multivariate signals without any projection. The scope of application of the novel algorithm is specified, and a comparison of the 2T-EMD technique with classical methods is performed on various simulated mono- and multivariate signals. The monovariate behaviour of the proposed method on noisy signals is then validated by decomposing a fractional Gaussian noise and an application to real life EEG data is finally presented

    Electroencephalographic Signal Processing and Classification Techniques for Noninvasive Motor Imagery Based Brain Computer Interface

    Get PDF
    In motor imagery (MI) based brain-computer interface (BCI), success depends on reliable processing of the noisy, non-linear, and non-stationary brain activity signals for extraction of features and effective classification of MI activity as well as translation to the corresponding intended actions. In this study, signal processing and classification techniques are presented for electroencephalogram (EEG) signals for motor imagery based brain-computer interface. EEG signals have been acquired placing the electrodes following the international 10-20 system. The acquired signals have been pre-processed removing artifacts using empirical mode decomposition (EMD) and two extended versions of EMD, ensemble empirical mode decomposition (EEMD), and multivariate empirical mode decomposition (MEMD) leading to better signal to noise ratio (SNR) and reduced mean square error (MSE) compared to independent component analysis (ICA). EEG signals have been decomposed into independent mode function (IMFs) that are further processed to extract features like sample entropy (SampEn) and band power (BP). The extracted features have been used in support vector machines to characterize and identify MI activities. EMD and its variants, EEMD, MEMD have been compared with common spatial pattern (CSP) for different MI activities. SNR values from EMD, EEMD and MEMD (4.3, 7.64, 10.62) are much better than ICA (2.1) but accuracy of MI activity identification is slightly better for ICA than EMD using BP and SampEn. Further work is outlined to include more features with larger database for better classification accuracy

    EEG signal analysis via a cleaning procedure based on multivariate empirical mode decomposition

    Get PDF
    IJCCI 2012Artifacts are present in most of the electroencephalography (EEG) recordings, making it difficult to interpret or analyze the data. In this paper a cleaning procedure based on a multivariate extension of empirical mode decomposition is used to improve the quality of the data. This is achieved by applying the cleaning method to raw EEG data. Then, a synchrony measure is applied on the raw and the clean data in order to compare the improvement of the classification rate. Two classifiers are used, linear discriminant analysis and neural networks. For both cases, the classification rate is improved about 20%

    Hand (Motor) Movement Imagery Classification of EEG Using Takagi-Sugeno-Kang Fuzzy-Inference Neural Network

    Get PDF
    Approximately 20 million people in the United States suffer from irreversible nerve damage and would benefit from a neuroprosthetic device modulated by a Brain-Computer Interface (BCI). These devices restore independence by replacing peripheral nervous system functions such as peripheral control. Although there are currently devices under investigation, contemporary methods fail to offer adaptability and proper signal recognition for output devices. Human anatomical differences prevent the use of a fixed model system from providing consistent classification performance among various subjects. Furthermore, notoriously noisy signals such as Electroencephalography (EEG) require complex measures for signal detection. Therefore, there remains a tremendous need to explore and improve new algorithms. This report investigates a signal-processing model that is better suited for BCI applications because it incorporates machine learning and fuzzy logic. Whereas traditional machine learning techniques utilize precise functions to map the input into the feature space, fuzzy-neuro system apply imprecise membership functions to account for uncertainty and can be updated via supervised learning. Thus, this method is better equipped to tolerate uncertainty and improve performance over time. Moreover, a variation of this algorithm used in this study has a higher convergence speed. The proposed two-stage signal-processing model consists of feature extraction and feature translation, with an emphasis on the latter. The feature extraction phase includes Blind Source Separation (BSS) and the Discrete Wavelet Transform (DWT), and the feature translation stage includes the Takagi-Sugeno-Kang Fuzzy-Neural Network (TSKFNN). Performance of the proposed model corresponds to an average classification accuracy of 79.4 % for 40 subjects, which is higher than the standard literature values, 75%, making this a superior model

    EEG artifacts reduction by multivariate empirical mode decomposition and multiscale entropy for monitoring depth of anaesthesia during surgery

    Get PDF
    Electroencephalography (EEG) has been widely utilized to measure the depth of anaesthesia (DOA) during operation. However, the EEG signals are usually contaminated by artifacts which have a consequence on the measured DOA accuracy. In this study, an effective and useful filtering algorithm based on multivariate empirical mode decomposition and multiscale entropy (MSE) is proposed to measure DOA. Mean entropy of MSE is used as an index to find artifacts-free intrinsic mode functions. The effect of different levels of artifacts on the performances of the proposed filtering is analysed using simulated data. Furthermore, 21 patients' EEG signals are collected and analysed using sample entropy to calculate the complexity for monitoring DOA. The correlation coefficients of entropy and bispectral index (BIS) results show 0.14 ± 0.30 and 0.63 ± 0.09 before and after filtering, respectively. Artificial neural network (ANN) model is used for range mapping in order to correlate the measurements with BIS. The ANN method results show strong correlation coefficient (0.75 ± 0.08). The results in this paper verify that entropy values and BIS have a strong correlation for the purpose of DOA monitoring and the proposed filtering method can effectively filter artifacts from EEG signals. The proposed method performs better than the commonly used wavelet denoising method. This study provides a fully adaptive and automated filter for EEG to measure DOA more accuracy and thus reduce risk related to maintenance of anaesthetic agents.This research was financially supported by the Center for Dynamical Biomarkers and Translational Medicine, National Central University, Taiwan, which is sponsored by Ministry of Science and Technology (Grant Number: NSC102-2911-I-008-001). Also, it was supported by Chung-Shan Institute of Science and Technology in Taiwan (Grant Numbers: CSIST-095-V301 and CSIST-095-V302) and National Natural Science Foundation of China (Grant Number: 51475342)

    Analysis of gamma-band activity from human EEG using empirical mode decomposition

    Get PDF
    The purpose of this paper is to determine whether gamma-band activity detection is improved when a filter, based on empirical mode decomposition (EMD), is added to the pre-processing block of single-channel electroencephalography (EEG) signals. EMD decomposes the original signal into a finite number of intrinsic mode functions (IMFs). EEGs from 25 control subjects were registered in basal and motor activity (hand movements) using only one EEG channel. Over the basic signal, IMF signals are computed. Gamma-band activity is computed using power spectrum density in the 30–60 Hz range. Event-related synchronization (ERS) was defined as the ratio of motor and basal activity. To evaluate the performance of the new EMD based method, ERS was computed from the basic and IMF signals. The ERS obtained using IMFs improves, from 31.00% to 73.86%, on the original ERS for the right hand, and from 22.17% to 47.69% for the left hand. As EEG processing is improved, the clinical applications of gamma-band activity will expand.Universidad de AlcaláInstituto de Salud Carlos II
    • …
    corecore