13 research outputs found

    Transient performance simulation of gas turbine engine integrated with fuel and control systems

    Get PDF
    Two new methods for the simulation of gas turbine fuel systems, one based on an inter-component volume (ICV) method, and the other based on the iterative Newton Raphson (NR) method, have been developed in this study. They are able to simulate the performance behaviour of each of the hydraulic components such as pumps, valves, metering unit of a fuel system, using physics-based models, which potentially offer more accurate results compared with those using transfer functions. A transient performance simulation system has been set up for gas turbine engines based on an inter-component volume (ICV). A proportional- integral (PI) control strategy is used for the simulation of engine control systems. An integrated engine and its control and hydraulic fuel systems has been set up to investigate their coupling effect during engine transient processes. The developed simulation methods and the systems have been applied to a model turbojet and a model turboshaft gas turbine engine to demonstrate the effectiveness of both two methods. The comparison between the results of engines with and without the ICV method simulated fuel system models shows that the delay of the engine transient response due to the inclusion of the fuel system components and introduced inter-component volumes is noticeable, although relatively small. The comparison of two developed methods applied to engine fuel system simulation demonstrate that both methods introduce delay effect to the engine transient response but the NR method is ahead than the ICV method due to the omission of inter-component volumes on engine fuel system simulation. The developed simulation methods are generic and can be applied to the performance simulation of any other gas turbines and their control and fuel systems. A sensitivity analysis of fuel system key parameters that may affect the engine transient behaviours has also been achieved and represented in this thesis. Three sets of fuel system key parameters have been introduced to investigate their sensitivities, which are, the volumes introduced for ICV method applied to fuel system simulation; the time constants introduced into those first order lags tosimulate the valve movements delay and fuel spray delay effect; and the fuel system key performance and structural parameters

    Aeronautical Propulsion

    Get PDF
    Reports on the following technologies are included: engine design, exhaust gases, use of composites, bearings, and supersonic and hypersonic propulsion

    Aeronautical engineering: A continuing bibliography with indexes (supplement 289)

    Get PDF
    This bibliography lists 792 reports, articles, and other documents introduced into the NASA scientific and technical information system in Mar. 1993. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Third International Conference on Inverse Design Concepts and Optimization in Engineering Sciences (ICIDES-3)

    Get PDF
    Papers from the Third International Conference on Inverse Design Concepts and Optimization in Engineering Sciences (ICIDES) are presented. The papers discuss current research in the general field of inverse, semi-inverse, and direct design and optimization in engineering sciences. The rapid growth of this relatively new field is due to the availability of faster and larger computing machines

    ECOS 2012

    Get PDF
    The 8-volume set contains the Proceedings of the 25th ECOS 2012 International Conference, Perugia, Italy, June 26th to June 29th, 2012. ECOS is an acronym for Efficiency, Cost, Optimization and Simulation (of energy conversion systems and processes), summarizing the topics covered in ECOS: Thermodynamics, Heat and Mass Transfer, Exergy and Second Law Analysis, Process Integration and Heat Exchanger Networks, Fluid Dynamics and Power Plant Components, Fuel Cells, Simulation of Energy Conversion Systems, Renewable Energies, Thermo-Economic Analysis and Optimisation, Combustion, Chemical Reactors, Carbon Capture and Sequestration, Building/Urban/Complex Energy Systems, Water Desalination and Use of Water Resources, Energy Systems- Environmental and Sustainability Issues, System Operation/ Control/Diagnosis and Prognosis, Industrial Ecology

    International Symposium on Magnetic Suspension Technology, Part 1

    Get PDF
    The goal of the symposium was to examine the state of technology of all areas of magnetic suspension and to review related recent developments in sensors and controls approaches, superconducting magnet technology, and design/implementation practices. The symposium included 17 technical sessions in which 55 papers were presented. The technical session covered the areas of bearings, sensors and controls, microgravity and vibration isolation, superconductivity, manufacturing applications, wind tunnel magnetic suspension systems, magnetically levitated trains (MAGLEV), space applications, and large gap magnetic suspension systems

    Third International Symposium on Magnetic Suspension Technology

    Get PDF
    In order to examine the state of technology of all areas of magnetic suspension and to review recent developments in sensors, controls, superconducting magnet technology, and design/implementation practices, the Third International Symposium on Magnetic Suspension Technology was held at the Holiday Inn Capital Plaza in Tallahassee, Florida on 13-15 Dec. 1995. The symposium included 19 sessions in which a total of 55 papers were presented. The technical sessions covered the areas of bearings, superconductivity, vibration isolation, maglev, controls, space applications, general applications, bearing/actuator design, modeling, precision applications, electromagnetic launch and hypersonic maglev, applications of superconductivity, and sensors

    Multivariable control for regulating high pressure centrifugal compressor with variable speed and IGV

    No full text
    The objective of this paper is to develop a multivariable control system for a class of centrifugal compressors, which exploit as control signals both the rotational speed and the Inlet Guide Vane (IGV). Linear Quadratic Gaussian control with Integral action (LQGI) and Model Predictive Control (MPC) are investigated. The LQGI and MPC controllers are compared to a standard proportional integral (PI) controller, to regulate the discharge pressure of the compressor. The control algorithms are simulated and compared in different operating scenarios. Results demonstrate that the proposed multivariabe control schemes provide better performance than the single-loop PI controller, thus motivating the use of IGV for control purposes
    corecore