17,122 research outputs found

    Cross-species analysis of genetically engineered mouse models of MAPK-driven colorectal cancer identifies hallmarks of the human disease

    Get PDF
    Effective treatment options for advanced colorectal cancer (CRC) are limited, survival rates are poor and this disease continues to be a leading cause of cancer-related deaths worldwide. Despite being a highly heterogeneous disease, a large subset of individuals with sporadic CRC typically harbor relatively few established ‘driver’ lesions. Here, we describe a collection of genetically engineered mouse models (GEMMs) of sporadic CRC that combine lesions frequently altered in human patients, including well-characterized tumor suppressors and activators of MAPK signaling. Primary tumors from these models were profiled, and individual GEMM tumors segregated into groups based on their genotypes. Unique allelic and genotypic expression signatures were generated from these GEMMs and applied to clinically annotated human CRC patient samples. We provide evidence that a Kras signature derived from these GEMMs is capable of distinguishing human tumors harboring KRAS mutation, and tracks with poor prognosis in two independent human patient cohorts. Furthermore, the analysis of a panel of human CRC cell lines suggests that high expression of the GEMM Kras signature correlates with sensitivity to targeted pathway inhibitors. Together, these findings implicate GEMMs as powerful preclinical tools with the capacity to recapitulate relevant human disease biology, and support the use of genetic signatures generated in these models to facilitate future drug discovery and validation efforts

    Concomitant Carcinoma in situ in Cystectomy Specimens Is Not Associated with Clinical Outcomes after Surgery

    Get PDF
    Objective: The aim of this study was to externally validate the prognostic value of concomitant urothelial carcinoma in situ (CIS) in radical cystectomy (RC) specimens using a large international cohort of bladder cancer patients. Methods: The records of 3,973 patients treated with RC and bilateral lymphadenectomy for urothelial carcinoma of the bladder (UCB) at nine centers worldwide were reviewed. Surgical specimens were evaluated by a genitourinary pathologist at each center. Uni- and multivariable Cox regression models addressed time to recurrence and cancer-specific mortality after RC. Results: 1,741 (43.8%) patients had concomitant CIS in their RC specimens. Concomitant CIS was more common in organ-confined UCB and was associated with lymphovascular invasion (p < 0.001). Concomitant CIS was not associated with either disease recurrence or cancer-specific death regardless of pathologic stage. The presence of concomitant CIS did not improve the predictive accuracy of standard predictors for either disease recurrence or cancer-specific death in any of the subgroups. Conclusions: We could not confirm the prognostic value of concomitant CIS in RC specimens. This, together with the discrepancy between pathologists in determining the presence of concomitant CIS at the morphologic level, limits the clinical utility of concomitant CIS in RC specimens for clinical decision-making. Copyright (C) 2011 S. Karger AG, Base

    Scalable laws for stable network congestion control

    Get PDF
    Discusses flow control in networks, in which sources control their rates based on feedback signals received from the network links, a feature present in current TCP protocols. We develop a congestion control system which is arbitrarily scalable, in the sense that its stability is maintained for arbitrary network topologies and arbitrary amounts of delay. Such a system can be implemented in a decentralized way with information currently available in networks plus a small amount of additional signaling

    Environmental test chamber for the support of learning and teaching in intelligent control

    Get PDF
    The paper describes the utility of a low cost, 1 m2 by 2 m forced ventilation, micro-climate test chamber, for the support of research and teaching in mechatronics. Initially developed for the evaluation of a new ventilation rate controller, the fully instrumented chamber now provides numerous learning opportunities and individual projects for both undergraduate and postgraduate research students

    Double-Frame Current Control with a Multivariable PI Controller and Power Compensation forWeak Unbalanced Networks

    Full text link
    The handling of weak networks with asymmetric loads and disturbances implies the accurate handling of the second-harmonic component that appears in an unbalanced network. This paper proposes a classic vector control approach using a PI-based controller with superior decoupling capabilities for operation in weak networks with unbalanced phase voltages. A synchronization method for weak unbalanced networks is detailed, with dedicated dimensioning rules. The use of a double-frame controller allows a current symmetry or controlled imbalance to be forced for compensation of power oscillations by controlling the negative current sequence. This paper also serves as a useful reminder of the proper way to cancel the inherent coupling effect due to the transformation to the synchronous rotating reference frame, and of basic considerations of the relationship between switching frequency and control bandwidth.Comment: 17 pages, contribution to the 2014 CAS - CERN Accelerator School: Power Converters, Baden, Switzerland, 7-14 May 201

    Data-based mechanistic modelling, forecasting, and control.

    Get PDF
    This article briefly reviews the main aspects of the generic data based mechanistic (DBM) approach to modeling stochastic dynamic systems and shown how it is being applied to the analysis, forecasting, and control of environmental and agricultural systems. The advantages of this inductive approach to modeling lie in its wide range of applicability. It can be used to model linear, nonstationary, and nonlinear stochastic systems, and its exploitation of recursive estimation means that the modeling results are useful for both online and offline applications. To demonstrate the practical utility of the various methodological tools that underpin the DBM approach, the article also outlines several typical, practical examples in the area of environmental and agricultural systems analysis, where DBM models have formed the basis for simulation model reduction, control system design, and forecastin

    Mapping Functions in Health-Related Quality of Life: Mapping From Two Cancer-Specific Health-Related Quality-of-Life Instruments to EQ-5D-3L.

    Get PDF
    BACKGROUND: Clinical trials in cancer frequently include cancer-specific measures of health but not preference-based measures such as the EQ-5D that are suitable for economic evaluation. Mapping functions have been developed to predict EQ-5D values from these measures, but there is considerable uncertainty about the most appropriate model to use, and many existing models are poor at predicting EQ-5D values. This study aims to investigate a range of potential models to develop mapping functions from 2 widely used cancer-specific measures (FACT-G and EORTC-QLQ-C30) and to identify the best model. METHODS: Mapping models are fitted to predict EQ-5D-3L values using ordinary least squares (OLS), tobit, 2-part models, splining, and to EQ-5D item-level responses using response mapping from the FACT-G and QLQ-C30. A variety of model specifications are estimated. Model performance and predictive ability are compared. Analysis is based on 530 patients with various cancers for the FACT-G and 771 patients with multiple myeloma, breast cancer, and lung cancer for the QLQ-C30. RESULTS: For FACT-G, OLS models most accurately predict mean EQ-5D values with the best predicting model using FACT-G items with similar results using tobit. Response mapping has low predictive ability. In contrast, for the QLQ-C30, response mapping has the most accurate predictions using QLQ-C30 dimensions. The QLQ-C30 has better predicted EQ-5D values across the range of possible values; however, few respondents in the FACT-G data set have low EQ-5D values, which reduces the accuracy at the severe end. CONCLUSIONS: OLS and tobit mapping functions perform well for both instruments. Response mapping gives the best model predictions for QLQ-C30. The generalizability of the FACT-G mapping function is limited to populations in moderate to good health

    Vibration suppression in multi-body systems by means of disturbance filter design methods

    Get PDF
    This paper addresses the problem of interaction in mechanical multi-body systems and shows that subsystem interaction can be considerably minimized while increasing performance if an efficient disturbance model is used. In order to illustrate the advantage of the proposed intelligent disturbance filter, two linear model based techniques are considered: IMC and the model based predictive (MPC) approach. As an illustrative example, multivariable mass-spring-damper and quarter car systems are presented. An adaptation mechanism is introduced to account for linear parameter varying LPV conditions. In this paper we show that, even if the IMC control strategy was not designed for MIMO systems, if a proper filter is used, IMC can successfully deal with disturbance rejection in a multivariable system, and the results obtained are comparable with those obtained by a MIMO predictive control approach. The results suggest that both methods perform equally well, with similar numerical complexity and implementation effort
    • 

    corecore