54 research outputs found

    Autonomous Quadrotor Navigation by Detecting Vanishing Points in Indoor Environments

    Get PDF
    abstract: Toward the ambitious long-term goal of a fleet of cooperating Flexible Autonomous Machines operating in an uncertain Environment (FAME), this thesis addresses various perception and control problems in autonomous aerial robotics. The objective of this thesis is to motivate the use of perspective cues in single images for the planning and control of quadrotors in indoor environments. In addition to providing empirical evidence for the abundance of such cues in indoor environments, the usefulness of these perspective cues is demonstrated by designing a control algorithm for navigating a quadrotor in indoor corridors. An Extended Kalman Filter (EKF), implemented on top of the vision algorithm, serves to improve the robustness of the algorithm to changing illumination. In this thesis, vanishing points are the perspective cues used to control and navigate a quadrotor in an indoor corridor. Indoor corridors are an abundant source of parallel lines. As a consequence of perspective projection, parallel lines in the real world, that are not parallel to the plane of the camera, intersect at a point in the image. This point is called the vanishing point of the image. The vanishing point is sensitive to the lateral motion of the camera and hence the quadrotor. By tracking the position of the vanishing point in every image frame, the quadrotor can navigate along the center of the corridor. Experiments are conducted using the Augmented Reality (AR) Drone 2.0. The drone is equipped with the following componenets: (1) 720p forward facing camera for vanishing point detection, (2) 240p downward facing camera, (3) Inertial Measurement Unit (IMU) for attitude control , (4) Ultrasonic sensor for estimating altitude, (5) On-board 1 GHz Processor for processing low level commands. The reliability of the vision algorithm is presented by flying the drone in indoor corridors.Dissertation/ThesisMasters Thesis Electrical Engineering 201

    Autonomous landing of fixed-wing aircraft on mobile platforms

    Get PDF
    E n esta tesis se propone un nuevo sistema que permite la operación de aeronaves autónomas sin tren de aterrizaje. El trabajo está motivado por el interés industrial en aeronaves con la capacidad de volar a gran altitud, con más capacidad de carga útil y capaces de aterrizar con viento cruzado. El enfoque seguido en este trabajo consiste en eliminar el sistema de aterrizaje de una aeronave de ala fija empleando una plataforma móvil de aterrizaje en tierra. La aeronave y la plataforma deben sincronizar su movimiento antes del aterrizaje, lo que se logra mediante la estimación del estado relativo entre ambas y el control cooperativo del movimiento. El objetivo principal de esta Tesis es el desarrollo de una solución práctica para el aterrizaje autónomo de una aeronave de ala fija en una plataforma móvil. En la tesis se combinan nuevos métodos con experimentos prácticos para los cuales se ha desarrollado un sistema de pruebas específico. Se desarrollan dos variantes diferentes del sistema de aterrizaje. El primero presta atención especial a la seguridad, es robusto ante retrasos en la comunicación entre vehículos y cumple procedimientos habituales de aterrizaje, al tiempo que reduce la complejidad del sistema. En el segundo se utilizan trayectorias optimizadas del vehículo y sincronización bilateral de posición para maximizar el rendimiento del aterrizaje en términos de requerimientos de longitud necesaria de pista, pero la estabilidad es dependiente del retraso de tiempo, con lo cual es necesario desarrollar un controlador estabilizador ampliado, basado en pasividad, que permite resolver este problema. Ambas estrategias imponen requisitos funcionales a los controladores de cada uno de los vehículos, lo que implica la capacidad de controlar el movimiento longitudinal sin afectar el control lateral o vertical, y viceversa. El control de vuelo basado en energía se utiliza para proporcionar dicha funcionalidad a la aeronave. Los sistemas de aterrizaje desarrollados se han analizado en simulación estableciéndose los límites de rendimiento mediante múltiples repeticiones aleatorias. Se llegó a la conclusión de que el controlador basado en seguridad proporciona un rendimiento de aterrizaje satisfactorio al tiempo que suministra una mayor seguridad operativa y un menor esfuerzo de implementación y certificación. El controlador basado en el rendimiento es prometedor para aplicaciones con una longitud de pista limitada. Se descubrió que los beneficios del controlador basado en el rendimiento son menos pronunciados para una dinámica de vehículos terrestres más lenta. Teniendo en cuenta la dinámica lenta de la configuración del demostrador, se eligió el enfoque basado en la seguridad para los primeros experimentos de aterrizaje. El sistema de aterrizaje se validó en diversas pruebas de aterrizaje exitosas, que, a juicio del autor, son las primeras en el mundo realizadas con aeronaves reales. En última instancia, el concepto propuesto ofrece importantes beneficios y constituye una estrategia prometedora para futuras soluciones de aterrizaje de aeronaves.In this thesis a new landing system is proposed, which allows for the operation of autonomous aircraft without landing gear. The work was motivated by the industrial need for more capable high altitude aircraft systems, which typically suffer from low payload capacity and high crosswind landing sensitivity. The approach followed in this work consists in removing the landing gear system from the aircraft and introducing a mobile ground-based landing platform. The vehicles must synchronize their motion prior to landing, which is achieved through relative state estimation and cooperative motion control. The development of a practical solution for the autonomous landing of an aircraft on a moving platform thus constitutes the main goal of this thesis. Therefore, theoretical investigations are combined with real experiments for which a special setup is developed and implemented. Two different landing system variants are developed — the safety-based landing system is robust to inter-vehicle communication delays and adheres to established landing procedures, while reducing system complexity. The performance-based landing system uses optimized vehicle trajectories and bilateral position synchronization to maximize landing performance in terms of used runway, but suffers from time delay-dependent stability. An extended passivity-based stabilizing controller was implemented to cope with this issue. Both strategies impose functional requirements on the individual vehicle controllers, which imply independent controllability of the translational degrees of freedom. Energy-based flight control is utilized to provide such functionality for the aircraft. The developed landing systems are analyzed in simulation and performance bounds are determined by means of repeated random sampling. The safety-based controller was found to provide satisfactory landing performance while providing higher operational safety, and lower implementation and certification effort. The performance-based controller is promising for applications with limited runway length. The performance benefits were found to be less pronounced for slower ground vehicle dynamics. Given the slow dynamics of the demonstrator setup, the safety-based approach was chosen for first landing experiments. The landing system was validated in a number of successful landing trials, which to the author’s best knowledge was the first time such technology was demonstrated on the given scale, worldwide. Ultimately, the proposed concept offers decisive benefits and constitutes a promising strategy for future aircraft landing solutions

    Consciosusness in Cognitive Architectures. A Principled Analysis of RCS, Soar and ACT-R

    Get PDF
    This report analyses the aplicability of the principles of consciousness developed in the ASys project to three of the most relevant cognitive architectures. This is done in relation to their aplicability to build integrated control systems and studying their support for general mechanisms of real-time consciousness.\ud To analyse these architectures the ASys Framework is employed. This is a conceptual framework based on an extension for cognitive autonomous systems of the General Systems Theory (GST).\ud A general qualitative evaluation criteria for cognitive architectures is established based upon: a) requirements for a cognitive architecture, b) the theoretical framework based on the GST and c) core design principles for integrated cognitive conscious control systems

    Advances in Reinforcement Learning

    Get PDF
    Reinforcement Learning (RL) is a very dynamic area in terms of theory and application. This book brings together many different aspects of the current research on several fields associated to RL which has been growing rapidly, producing a wide variety of learning algorithms for different applications. Based on 24 Chapters, it covers a very broad variety of topics in RL and their application in autonomous systems. A set of chapters in this book provide a general overview of RL while other chapters focus mostly on the applications of RL paradigms: Game Theory, Multi-Agent Theory, Robotic, Networking Technologies, Vehicular Navigation, Medicine and Industrial Logistic

    Feasible, Robust and Reliable Automation and Control for Autonomous Systems

    Get PDF
    The Special Issue book focuses on highlighting current research and developments in the automation and control field for autonomous systems as well as showcasing state-of-the-art control strategy approaches for autonomous platforms. The book is co-edited by distinguished international control system experts currently based in Sweden, the United States of America, and the United Kingdom, with contributions from reputable researchers from China, Austria, France, the United States of America, Poland, and Hungary, among many others. The editors believe the ten articles published within this Special Issue will be highly appealing to control-systems-related researchers in applications typified in the fields of ground, aerial, maritime vehicles, and robotics as well as industrial audiences

    Development of Self-Learning Type-2 Fuzzy Systems for System Identification and Control of Autonomous Systems

    Full text link
    Modelling and control of dynamic systems are faced by multiple technical challenges, mainly due to the nature of uncertain complex, nonlinear, and time-varying systems. Traditional modelling techniques require a complete understanding of system dynamics and obtaining comprehensive mathematical models is not always achievable due to limited knowledge of the systems as well as the presence of multiple uncertainties in the environment. As universal approximators, fuzzy logic systems (FLSs), neural networks (NNs) and neuro-fuzzy systems have proved to be successful computational tools for representing the behaviour of complex dynamical systems. Moreover, FLSs, NNs and learning-based techniques have been gaining popularity for controlling complex, ill-defined, nonlinear, and time-varying systems in the face of uncertainties. However, fuzzy rules derived by experts can be too ad-hoc, and the performance is less than optimum. In other words, generating fuzzy rules and membership functions in fuzzy systems is a potential challenge especially for systems with many variables. Moreover, under the umbrella of FLSs, although type-1 fuzzy logic control systems (T1-FLCs) have been applied to control various complex nonlinear systems, they have limited capability to handle uncertainties. Aiming to accommodate uncertainties, type-2 fuzzy logic control systems (T2-FLCs) were established. This thesis aims to address the shortcomings of existing fuzzy techniques by utilisation of type-2 FLCs with novel adaptive capabilities. The first contribution of this thesis is a novel online system identification technique by means of a recursive interval type-2 Takagi-Sugeno fuzzy C-means clustering technique (IT2-TS-FC) to accommodate the footprint-of-uncertainties (FoUs). This development is meant to specifically address the shortcomings of type-1 fuzzy systems in capturing the footprint-of-uncertainties such as mechanical wear, rotor damage, battery drain and sensor and actuator faults. Unlike previous type-2 TS fuzzy models, the proposed method constructs two fuzzifiers (upper and lower) and two regression coefficients in the consequent part to handle uncertainties. The weighted least square method is employed to compute the regression coefficients. The proposed method is validated using two benchmarks, namely, real flight test data of a quadcopter drone and Mackey-Glass time series data. The algorithm has the capability to model uncertainties (e.g., noisy dataset). The second contribution of this thesis is the development of a novel self-adaptive interval type-2 fuzzy controller named the SAF2C for controlling multi-input multi-output (MIMO) nonlinear systems. The adaptation law is derived using sliding mode control (SMC) theory to reduce the computation time so that the learning process can be expedited by 80% compared to separate single-input single-output (SISO) controllers. The system employs the `Enhanced Iterative Algorithm with Stop Condition' (EIASC) type-reduction method, which is more computationally efficient than the `Karnik-Mendel' type-reduction algorithm. The stability of the SAF2C is proven using the Lyapunov technique. To ensure the applicability of the proposed control scheme, SAF2C is implemented to control several dynamical systems, including a simulated MIMO hexacopter unmanned aerial vehicle (UAV) in the face of external disturbance and parameter variations. The ability of SAF2C to filter the measurement noise is demonstrated, where significant improvement is obtained using the proposed controller in the face of measurement noise. Also, the proposed closed-loop control system is applied to control other benchmark dynamic systems (e.g., a simulated autonomous underwater vehicle and inverted pendulum on a cart system) demonstrating high accuracy and robustness to variations in system parameters and external disturbance. Another contribution of this thesis is a novel stand-alone enhanced self-adaptive interval type-2 fuzzy controller named the ESAF2C algorithm, whose type-2 fuzzy parameters are tuned online using the SMC theory. This way, we expect to design a computationally efficient adaptive Type-2 fuzzy system, suitable for real-time applications by introducing the EIASC type-reducer. The proposed technique is applied on a quadcopter UAV (QUAV), where extensive simulations and real-time flight tests for a hovering QUAV under wind disturbances are also conducted to validate the efficacy of the ESAF2C. Specifically, the control performance is investigated in the face of external wind gust disturbances, generated using an industrial fan. Stability analysis of the ESAF2C control system is investigated using the Lyapunov theory. Yet another contribution of this thesis is the development of a type-2 evolving fuzzy control system (T2-EFCS) to facilitate self-learning (either from scratch or from a certain predefined rule). T2-EFCS has two phases, namely, the structure learning and the parameters learning. The structure of T2-EFCS does not require previous information about the fuzzy structure, and it can start the construction of its rules from scratch with only one rule. The rules are then added and pruned in an online fashion to achieve the desired set-point. The proposed technique is applied to control an unmanned ground vehicle (UGV) in the presence of multiple external disturbances demonstrating the robustness of the proposed control systems. The proposed approach turns out to be computationally efficient as the system employs fewer fuzzy parameters while maintaining superior control performance

    Molecular phylogeny of horseshoe crab using mitochondrial Cox1 gene as a benchmark sequence

    Get PDF
    An effort to assess the utility of 650 bp Cytochrome C oxidase subunit I (DNA barcode) gene in delineating the members horseshoe crabs (Family: xiphosura) with closely related sister taxa was made. A total of 33 sequences were extracted from National Center for Biotechnological Information (NCBI) which include horseshoe crabs, beetles, common crabs and scorpion sequences. Constructed phylogram showed beetles are closely related with horseshoe crabs than common crabs. Scorpion spp were distantly related to xiphosurans. Phylogram and observed genetic distance (GD) date were also revealed that Limulus polyphemus was closely related with Tachypleus tridentatus than with T.gigas. Carcinoscorpius rotundicauda was distantly related with L.polyphemus. The observed mean Genetic Distance (GD) value was higher in 3rd codon position in all the selected group of organisms. Among the horseshoe crabs high GC content was observed in L.polyphemus (38.32%) and lowest was observed in T.tridentatus (32.35%). We conclude that COI sequencing (barcoding) could be used in identifying and delineating evolutionary relatedness with closely related specie

    Crab and cockle shells as heterogeneous catalysts in the production of biodiesel

    Get PDF
    In the present study, the waste crab and cockle shells were utilized as source of calcium oxide to transesterify palm olein into methyl esters (biodiesel). Characterization results revealed that the main component of the shells are calcium carbonate which transformed into calcium oxide upon activated above 700 °C for 2 h. Parametric studies have been investigated and optimal conditions were found to be catalyst amount, 5 wt.% and methanol/oil mass ratio, 0.5:1. The waste catalysts perform equally well as laboratory CaO, thus creating another low-cost catalyst source for producing biodiesel. Reusability results confirmed that the prepared catalyst is able to be reemployed up to five times. Statistical analysis has been performed using a Central Composite Design to evaluate the contribution and performance of the parameters on biodiesel purity
    corecore