56 research outputs found

    Code-timing synchronization in DS-CDMA systems using space-time diversity

    Get PDF
    The synchronization of a desired user transmitting a known training sequence in a direct-sequence (DS) asynchronous code-division multiple-access (CDMA) sys-tem is addressed. It is assumed that the receiver consists of an arbitrary antenna array and works in a near-far, frequency-nonselective, slowly fading channel. The estimator that we propose is derived by applying the maximum likelihood (ML) principle to a signal model in which the contribution of all the interfering compo-nents (e.g., multiple-access interference, external interference and noise) is modeled as a Gaussian term with an unknown and arbitrary space-time correlation matrix. The main contribution of this paper is the fact that the estimator makes eÆcient use of the structure of the signals in both the space and time domains. Its perfor-mance is compared with the Cramer-Rao Bound, and with the performance of other methods proposed recently that also employ an antenna array but only exploit the structure of the signals in one of the two domains, while using the other simply as a means of path diversity. It is shown that the use of the temporal and spatial structures is necessary to achieve synchronization in heavily loaded systems or in the presence of directional external interference.Peer ReviewedPostprint (published version

    Performance Analysis of Iterative Channel Estimation and Multiuser Detection in Multipath DS-CDMA Channels

    Full text link
    This paper examines the performance of decision feedback based iterative channel estimation and multiuser detection in channel coded aperiodic DS-CDMA systems operating over multipath fading channels. First, explicit expressions describing the performance of channel estimation and parallel interference cancellation based multiuser detection are developed. These results are then combined to characterize the evolution of the performance of a system that iterates among channel estimation, multiuser detection and channel decoding. Sufficient conditions for convergence of this system to a unique fixed point are developed.Comment: To appear in the IEEE Transactions on Signal Processin

    Frequency domain equalization space-time block-coded CDMA transmission system

    Get PDF
    Abstract In this work we propose a space-time block-coded (STBF) CDMA transmission system suitable for use with frequency domain equalization (FDE) algorithms. We illustrate the FDE by implementing the maximal ratio combining, the zero forcing and the minimum mean squared error single user detection algorithms. A diversity gain analysis is developed and some interesting results are pointed out. It is shown through computer simulations that the proposed transmission system exhibits good performance in terms of bit error rate when compared to previously proposed STBC CDMA transmission systems.</p

    Cooperative diversity for the cellular uplink: Sharing strategies, performance analysis, and receiver design

    Get PDF
    In this thesis, we propose data sharing schemes for the cooperative diversity in a cellular uplink to exploit diversity and enhance throughput performance of the system. Particularly, we consider new two and three-or-more user decode and forward (DF) protocols using space time block codes. We discuss two-user and three-user amplify and forward (AF) protocols and evaluate the performance of the above mentioned data sharing protocols in terms of the bit error rate and the throughput in an asynchronous code division multiple access (CDMA) cellular uplink. We develop a linear receiver for joint space-time decoding and multiuser detection that provides full diversity and near maximum-likelihood performance.;We also focus on a practical situation where inter-user channel is noisy and cooperating users can not successfully estimate other user\u27s data. We further design our system model such that, users decide not to forward anything in case of symbol errors. Channel estimation plays an important role here, since cooperating users make random estimation errors and the base station can not have the knowledge of the errors or the inter-user channels. We consider a training-based approach for channel estimation. We provide an information outage probability analysis for the proposed multi-user sharing schemes. (Abstract shortened by UMI.)

    Collaborative modulation multiple access for single hop and multihop networks

    Get PDF
    While the bandwidth available for wireless networks is limited, the world has seen an unprecedented growth in the number of mobile subscribers and an ever increasing demand for high data rates. Therefore efficient utilisation of bandwidth to maximise link spectral efficiency and number of users that can be served simultaneously are primary goals in the design of wireless systems. To achieve these goals, in this thesis, a new non-orthogonal uplink multiple access scheme which combines the functionalities of adaptive modulation and multiple access called collaborative modulation multiple access (CMMA) is proposed. CMMA enables multiple users to access the network simultaneously and share the same bandwidth even when only a single receive antenna is available and in the presence of high channel correlation. Instead of competing for resources, users in CMMA share resources collaboratively by employing unique modulation sets (UMS) that differ in phase, power, and/or mapping structure. These UMS are designed to insure that the received signal formed from the superposition of all users’ signals belongs to a composite QAM constellation (CC) with a rate equal to the sum rate of all users. The CC and its constituent UMSs are designed centrally at the BS to remove ambiguity, maximize the minimum Euclidian distance (dmin) of the CC and insure a minimum BER performance is maintained. Users collaboratively precode their transmitted signal by performing truncated channel inversion and phase rotation using channel state information (CSI ) obtained from a periodic common pilot to insure that their combined signal at the BS belongs to the CC known at the BS which in turn performs a simple joint maximum likelihood detection without the need for CSI. The coherent addition of users’ power enables CMMA to achieve high link spectral efficiency at any time without extra power or bandwidth but on the expense of graceful degradation in BER performance. To improve the BER performance of CMMA while preserving its precoding and detection structure and without the need for pilot-aided channel estimation, a new selective diversity combining scheme called SC-CMMA is proposed. SC-CMMA optimises the overall group performance providing fairness and diversity gain for various users with different transmit powers and channel conditions by selecting a single antenna out of a group of L available antennas that minimises the total transmit power required for precoding at any one time. A detailed study of capacity and BER performance of CMMA and SC-CMMA is carried out under different level of channel correlations which shows that both offer high capacity gain and resilience to channel correlation. SC-CMMA capacity even increase with high channel correlation between users’ channels. CMMA provides a practical solution for implementing the multiple access adder channel (MAAC) in fading environments hence a hybrid approach combining both collaborative coding and modulation referred to as H-CMMA is investigated. H-CMMA divides users into a number of subgroups where users within a subgroup are assigned the same modulation set and different multiple access codes. H-CMMA adjusts the dmin of the received CC by varying the number of subgroups which in turn varies the number of unique constellation points for the same number of users and average total power. Therefore H-CMMA can accommodate many users with different rates while flexibly managing the complexity, rate and BER performance depending on the SNR. Next a new scheme combining CMMA with opportunistic scheduling using only partial CSI at the receiver called CMMA-OS is proposed to combine both the power gain of CMMA and the multiuser diversity gain that arises from users’ channel independence. To avoid the complexity and excessive feedback associated with the dynamic update of the CC, the BS takes into account the independence of users’ channels in the design of the CC and its constituent UMSs but both remain unchanged thereafter. However UMS are no longer associated with users, instead channel gain’s probability density function is divided into regions with identical probability and each UMS is associated with a specific region. This will simplify scheduling as users can initially chose their UMS based on their CSI and the BS will only need to resolve any collision when the channels of two or more users are located at the same region. Finally a high rate cooperative communication scheme, called cooperative modulation (CM) is proposed for cooperative multiuser systems. CM combines the reliability of the cooperative diversity with the high spectral efficiency and multiple access capabilities of CMMA. CM maintains low feedback and high spectral efficiency by restricting relaying to a single route with the best overall channel. Two possible variations of CM are proposed depending on whether CSI available only at the users or just at the BS and the selected relay. The first is referred to Precode, Amplify, and Forward (PAF) while the second one is called Decode, Remap, and Forward (DMF). A new route selection algorithm for DMF based on maximising dmin of random CC is also proposed using a novel fast low-complexity multi-stage sphere based algorithm to calculate the dmin at the relay of random CC that is used for both relay selection and detection

    Synchronization in CDMA systems

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Novel multiple antenna techniques for improved diversity in wireless communication systems

    Get PDF
    The focus of this thesis is to enhance the performance of wireless communication systems through the exploitation of multiple antennas at both the transmitter and the receiver ends of a communication link. Such a multiple-input multiple-output (MIMO) connection can theoretically provide spatially independent channels which can be exploited to provide diversity gain and thereby mitigate the problem of channel fading. To integrate such MIMO technology with emerging wireless systems such as third generation code division multiple access (CDMA) and fourth generation orthogonal division multiple access (OFDMA) based-approaches novel advanced signal processing techniques are required. The major advantages of MIMO systems, including array, diversity and multiplexing gains, are initially reviewed. Diversity gain is identified as the key property, which leverages the spatial independent channels to increase the robustness of the communication link. The family of space-time block codes is then introduced as a low computational complexity scheme to benefit from diversity gain within wireless systems. In particular, extended-orthogonal and quasi-orthogonal space-time block codes (EO-/QO-STBCs) are introduced for systems with four transmit antennas which can operate either in open or closed-loop forms. New EO-STBC and QO-STBC wideband CDMA transmission schemes are proposed which when operating in closed-loop mode, i.e. channel state information is exploited at the transmitter, is shown to attain full diversity and thereby outperform previous schemes in terms of attain able symbol error rate performance. This advantage is then utilized in MIMO-OFDM transmission schemes and similar frame error rate (FER) performance advantage is attained. Finally, to mitigate multiuser interference within the proposed MIMO-OFDM system a novel two-step combined parallel interference canceller and multiuser detection scheme is proposed. Simulation studies based upon FER confirm the efficacy of the technique
    • 

    corecore