265 research outputs found

    Coordinated Multicasting with Opportunistic User Selection in Multicell Wireless Systems

    Full text link
    Physical layer multicasting with opportunistic user selection (OUS) is examined for multicell multi-antenna wireless systems. By adopting a two-layer encoding scheme, a rate-adaptive channel code is applied in each fading block to enable successful decoding by a chosen subset of users (which varies over different blocks) and an application layer erasure code is employed across multiple blocks to ensure that every user is able to recover the message after decoding successfully in a sufficient number of blocks. The transmit signal and code-rate in each block determine opportunistically the subset of users that are able to successfully decode and can be chosen to maximize the long-term multicast efficiency. The employment of OUS not only helps avoid rate-limitations caused by the user with the worst channel, but also helps coordinate interference among different cells and multicast groups. In this work, efficient algorithms are proposed for the design of the transmit covariance matrices, the physical layer code-rates, and the target user subsets in each block. In the single group scenario, the system parameters are determined by maximizing the group-rate, defined as the physical layer code-rate times the fraction of users that can successfully decode in each block. In the multi-group scenario, the system parameters are determined by considering a group-rate balancing optimization problem, which is solved by a successive convex approximation (SCA) approach. To further reduce the feedback overhead, we also consider the case where only part of the users feed back their channel vectors in each block and propose a design based on the balancing of the expected group-rates. In addition to SCA, a sample average approximation technique is also introduced to handle the probabilistic terms arising in this problem. The effectiveness of the proposed schemes is demonstrated by computer simulations.Comment: Accepted by IEEE Transactions on Signal Processin

    A Novel Transmission Scheme for the KK-user Broadcast Channel with Delayed CSIT

    Full text link
    The state-dependent KK-user memoryless Broadcast Channel~(BC) with state feedback is investigated. We propose a novel transmission scheme and derive its corresponding achievable rate region, which, compared to some general schemes that deal with feedback, has the advantage of being relatively simple and thus is easy to evaluate. In particular, it is shown that the capacity region of the symmetric erasure BC with an arbitrary input alphabet size is achievable with the proposed scheme. For the fading Gaussian BC, we derive a symmetric achievable rate as a function of the signal-to-noise ratio~(SNR) and a small set of parameters. Besides achieving the optimal degrees of freedom at high SNR, the proposed scheme is shown, through numerical results, to outperform existing schemes from the literature in the finite SNR regime.Comment: 30 pages, 3 figures, submitted to IEEE Transactions on Wireless Communications (revised version

    Capacity Region of the Broadcast Channel with Two Deterministic Channel State Components

    Full text link
    This paper establishes the capacity region of a class of broadcast channels with random state in which each channel component is selected from two possible functions and each receiver knows its state sequence. This channel model does not fit into any class of broadcast channels for which the capacity region was previously known and is useful in studying wireless communication channels when the fading state is known only at the receivers. The capacity region is shown to coincide with the UV outer bound and is achieved via Marton coding.Comment: 5 pages, 3 figures. Submitted to ISIT 201

    Content Delivery in Erasure Broadcast Channels with Cache and Feedback

    Full text link
    We study a content delivery problem in a K-user erasure broadcast channel such that a content providing server wishes to deliver requested files to users, each equipped with a cache of a finite memory. Assuming that the transmitter has state feedback and user caches can be filled during off-peak hours reliably by the decentralized content placement, we characterize the achievable rate region as a function of the memory sizes and the erasure probabilities. The proposed delivery scheme, based on the broadcasting scheme by Wang and Gatzianas et al., exploits the receiver side information established during the placement phase. Our results can be extended to centralized content placement as well as multi-antenna broadcast channels with state feedback.Comment: 29 pages, 7 figures. A short version has been submitted to ISIT 201
    corecore