13 research outputs found

    Multitraining support vector machine for image retrieval

    Get PDF
    Relevance feedback (RF) schemes based on support vector machines (SVMs) have been widely used in content-based image retrieval (CBIR). However, the performance of SVM-based RF approaches is often poor when the number of labeled feedback samples is small. This is mainly due to 1) the SVM classifier being unstable for small-size training sets because its optimal hyper plane is too sensitive to the training examples; and 2) the kernel method being ineffective because the feature dimension is much greater than the size of the training samples. In this paper, we develop a new machine learning technique, multitraining SVM (MTSVM), which combines the merits of the cotraining technique and a random sampling method in the feature space. Based on the proposed MTSVM algorithm, the above two problems can be mitigated. Experiments are carried out on a large image set of some 20 000 images, and the preliminary results demonstrate that the developed method consistently improves the performance over conventional SVM-based RFs in terms of precision and standard deviation, which are used to evaluate the effectiveness and robustness of a RF algorithm, respectively

    Semisupervised SVM batch mode active learning with applications to image retrieval

    Get PDF
    Ministry of Education, Singapore under its Academic Research Funding Tier

    Ensemble Support Vector Machine Models of Radiation-Induced Lung Injury Risk

    Get PDF
    Patients undergoing radiation therapy can develop a potentially fatal inflammation of the lungs known as radiation pneumonitis: RP). In practice, modeling RP factors is difficult because existing data are under-sampled and imbalanced. Support vector machines: SVMs), a class of statistical learning methods that implicitly maps data into a higher dimensional space, is one machine learning method that recently has been applied to the RP problem with encouraging results. In this thesis, we present and evaluate an ensemble SVM method of modeling radiation pneumonitis. The method internalizes kernel/model parameter selection into model building and enables feature scaling via Olivier Chapelle\u27s method. We show that the ensemble method provides statistically significant increases to the cross-folded area under the receiver operating characteristic curve while maintaining model parsimony. Finally, we extend our model with John C. Platt\u27s method to support non-binary outcomes in order to augment clinical relevancy

    Speeding up active relevance feedback with approximate kNN retrieval for hyperplane queries

    Full text link
    In content-based image retrieval, relevance feedback (RF) is a prominent method for reducing the semantic gap between the low-level features describing the content and the usually higher-level meaning of user's target. Recent RF methods are able to identify complex target classes after relatively few feedback iterations. However, because the computational complexity of such methods is linear in the size of the database, retrieval can be quite slow on very large databases. To address this scalability issue for active learning-based RF, we put forward a method that consists in the construction of an index in the feature space associated to a kernel function and in performing approximate kNN hyperplane queries with this feature space index. The experimental evaluation performed on two image databases show that a significant speedup can be achieved at the expense of a limited increase in the number of feedback rounds
    corecore