354 research outputs found

    Генерация потоковых сетей акторов поиска кратчайших путей для параллельной многоядерной реализации

    Get PDF
    Objectives. The problem of parallelizing computations on multicore systems is considered. On the Floyd – Warshall blocked algorithm of shortest paths search in dense graphs of large size, two types of parallelism are compared: fork-join and network dataflow. Using the CAL programming language, a method of developing actors and an algorithm of generating parallel dataflow networks are proposed. The objective is to improve performance of parallel implementations of algorithms which have the property of partial order of computations on multicore processors.Methods. Methods of graph theory, algorithm theory, parallelization theory and formal language theory are used.Results. Claims about the possibility of reordering calculations in the blocked Floyd – Warshall algorithm are proved, which make it possible to achieve a greater load of cores during algorithm execution. Based on the claims, a method of constructing actors in the CAL language is developed and an algorithm for automatic generation of dataflow CAL networks for various configurations of block matrices describing the lengths of the shortest paths is proposed. It is proved that the networks have the properties of rate consistency, boundedness, and liveness. In actors running in parallel, the order of execution of actions with asynchronous behavior can change dynamically, resulting in efficient use of caches and increased core load. To implement the new features of actors, networks and the method of their generation, a tunable multi-threaded CAL engine has been developed that implements a static dataflow model of computation with bounded sizes of buffers. From the experimental results obtained on four types of multi-core processors it follows that there is an optimal size of the network matrix of actors for which the performance is maximum, and the size depends on the number of cores and the size of graph.Conclusion. It has been shown that dataflow networks of actors are an effective means to parallelize computationally intensive algorithms that describe a partial order of computations over decomposed data. The results obtained on the blocked algorithm of shortest paths search prove that the parallelism of dataflow networks gives higher performance of software implementations on multicore processors in comparison with the fork-join parallelism of OpenMP.Цели. Рассматривается задача распараллеливания вычислений на многоядерных системах. Посредством блочного алгоритма Флойда – Уоршалла поиска кратчайших путей на плотных графах большого размера сравниваются два вида параллелизма: разветвление/слияние и сетевой потоковый. С использованием языка программирования CAL разрабатываются метод построения акторов потока данных и алгоритм генерации параллельных сетей акторов. Целью работы является повышение производительности параллельных сетевых реализаций алгоритмов, обладающих свойством частичного порядка вычислений, на многоядерных процессорах.Методы. Используются методы теории графов, теории алгоритмов, теории распараллеливания, теории формальных языков.Результаты. Доказаны утверждения о возможности переупорядочивания вычислений в блочном алгоритме Флойда – Уоршалла, способствующие повышению загрузки ядер при реализации алгоритма. На основе утверждений разработан метод построения акторов на языке CAL и предложен алгоритм автоматической генерации CAL-сетей потока данных для различных конфигураций матриц блоков, описывающих длины кратчайших путей. Доказано, что сети обладают свойствами согласованности, ограниченности и живучести. В акторах, работающих параллельно, порядок выполнения действий с асинхронным поведением может динамически меняться, что приводит к эффективному использованию кэшей и увеличению загрузки ядер. Для реализации новых возможностей акторов, сетей и метода их генерации разработан настраиваемый многопоточный CAL-движок, реализующий статическую модель потоковых вычислений с ограниченными размерами буферов. Из экспериментальных результатов, полученных на четырех типах многоядерных процессоров, следует, что существует оптимальный размер сетевой матрицы акторов, для которого производительность максимальна, и этот размер зависит от размера графа и количества ядер.Заключение. Показано, что сети акторов потока данных являются эффективным средством распарал-леливания алгоритмов с высокой вычислительной нагрузкой, описывающих частичный порядок вычислений над данными, декомпозированными на части. Результаты, полученные на блочном алгоритме поиска кратчайших путей, показали, что параллелизм сетей потока данных дает более высокую производительность программных реализаций на многоядерных процессорах по сравнению с параллелизмом разветвления/слияния стандарта OpenMP

    Improving the scalability of parallel N-body applications with an event driven constraint based execution model

    Full text link
    The scalability and efficiency of graph applications are significantly constrained by conventional systems and their supporting programming models. Technology trends like multicore, manycore, and heterogeneous system architectures are introducing further challenges and possibilities for emerging application domains such as graph applications. This paper explores the space of effective parallel execution of ephemeral graphs that are dynamically generated using the Barnes-Hut algorithm to exemplify dynamic workloads. The workloads are expressed using the semantics of an Exascale computing execution model called ParalleX. For comparison, results using conventional execution model semantics are also presented. We find improved load balancing during runtime and automatic parallelism discovery improving efficiency using the advanced semantics for Exascale computing.Comment: 11 figure

    Modeling and Mapping of Optimized Schedules for Embedded Signal Processing Systems

    Get PDF
    The demand for Digital Signal Processing (DSP) in embedded systems has been increasing rapidly due to the proliferation of multimedia- and communication-intensive devices such as pervasive tablets and smart phones. Efficient implementation of embedded DSP systems requires integration of diverse hardware and software components, as well as dynamic workload distribution across heterogeneous computational resources. The former implies increased complexity of application modeling and analysis, but also brings enhanced potential for achieving improved energy consumption, cost or performance. The latter results from the increased use of dynamic behavior in embedded DSP applications. Furthermore, parallel programming is highly relevant in many embedded DSP areas due to the development and use of Multiprocessor System-On-Chip (MPSoC) technology. The need for efficient cooperation among different devices supporting diverse parallel embedded computations motivates high-level modeling that expresses dynamic signal processing behaviors and supports efficient task scheduling and hardware mapping. Starting with dynamic modeling, this thesis develops a systematic design methodology that supports functional simulation and hardware mapping of dynamic reconfiguration based on Parameterized Synchronous Dataflow (PSDF) graphs. By building on the DIF (Dataflow Interchange Format), which is a design language and associated software package for developing and experimenting with dataflow-based design techniques for signal processing systems, we have developed a novel tool for functional simulation of PSDF specifications. This simulation tool allows designers to model applications in PSDF and simulate their functionality, including use of the dynamic parameter reconfiguration capabilities offered by PSDF. With the help of this simulation tool, our design methodology helps to map PSDF specifications into efficient implementations on field programmable gate arrays (FPGAs). Furthermore, valid schedules can be derived from the PSDF models at runtime to adapt hardware configurations based on changing data characteristics or operational requirements. Under certain conditions, efficient quasi-static schedules can be applied to reduce overhead and enhance predictability in the scheduling process. Motivated by the fact that scheduling is critical to performance and to efficient use of dynamic reconfiguration, we have focused on a methodology for schedule design, which complements the emphasis on automated schedule construction in the existing literature on dataflow-based design and implementation. In particular, we have proposed a dataflow-based schedule design framework called the dataflow schedule graph (DSG), which provides a graphical framework for schedule construction based on dataflow semantics, and can also be used as an intermediate representation target for automated schedule generation. Our approach to applying the DSG in this thesis emphasizes schedule construction as a design process rather than an outcome of the synthesis process. Our approach employs dataflow graphs for representing both application models and schedules that are derived from them. By providing a dataflow-integrated framework for unambiguously representing, analyzing, manipulating, and interchanging schedules, the DSG facilitates effective codesign of dataflow-based application models and schedules for execution of these models. As multicore processors are deployed in an increasing variety of embedded image processing systems, effective utilization of resources such as multiprocessor systemon-chip (MPSoC) devices, and effective handling of implementation concerns such as memory management and I/O become critical to developing efficient embedded implementations. However, the diversity and complexity of applications and architectures in embedded image processing systems make the mapping of applications onto MPSoCs difficult. We help to address this challenge through a structured design methodology that is built upon the DSG modeling framework. We refer to this methodology as the DEIPS methodology (DSG-based design and implementation of Embedded Image Processing Systems). The DEIPS methodology provides a unified framework for joint consideration of DSG structures and the application graphs from which they are derived, which allows designers to integrate considerations of parallelization and resource constraints together with the application modeling process. We demonstrate the DEIPS methodology through cases studies on practical embedded image processing systems

    MULTI-SCALE SCHEDULING TECHNIQUES FOR SIGNAL PROCESSING SYSTEMS

    Get PDF
    A variety of hardware platforms for signal processing has emerged, from distributed systems such as Wireless Sensor Networks (WSNs) to parallel systems such as Multicore Programmable Digital Signal Processors (PDSPs), Multicore General Purpose Processors (GPPs), and Graphics Processing Units (GPUs) to heterogeneous combinations of parallel and distributed devices. When a signal processing application is implemented on one of those platforms, the performance critically depends on the scheduling techniques, which in general allocate computation and communication resources for competing processing tasks in the application to optimize performance metrics such as power consumption, throughput, latency, and accuracy. Signal processing systems implemented on such platforms typically involve multiple levels of processing and communication hierarchy, such as network-level, chip-level, and processor-level in a structural context, and application-level, subsystem-level, component-level, and operation- or instruction-level in a behavioral context. In this thesis, we target scheduling issues that carefully address and integrate scheduling considerations at different levels of these structural and behavioral hierarchies. The core contributions of the thesis include the following. Considering both the network-level and chip-level, we have proposed an adaptive scheduling algorithm for wireless sensor networks (WSNs) designed for event detection. Our algorithm exploits discrepancies among the detection accuracy of individual sensors, which are derived from a collaborative training process, to allow each sensor to operate in a more energy efficient manner while the network satisfies given constraints on overall detection accuracy. Considering the chip-level and processor-level, we incorporated both temperature and process variations to develop new scheduling methods for throughput maximization on multicore processors. In particular, we studied how to process a large number of threads with high speed and without violating a given maximum temperature constraint. We targeted our methods to multicore processors in which the cores may operate at different frequencies and different levels of leakage. We develop speed selection and thread assignment schedulers based on the notion of a core's steady state temperature. Considering the application-level, component-level and operation-level, we developed a new dataflow based design flow within the targeted dataflow interchange format (TDIF) design tool. Our new multiprocessor system-on-chip (MPSoC)-oriented design flow, called TDIF-PPG, is geared towards analysis and mapping of embedded DSP applications on MPSoCs. An important feature of TDIF-PPG is its capability to integrate graph level parallelism and actor level parallelism into the application mapping process. Here, graph level parallelism is exposed by the dataflow graph application representation in TDIF, and actor level parallelism is modeled by a novel model for multiprocessor dataflow graph implementation that we call the Parallel Processing Group (PPG) model. Building on the contribution above, we formulated a new type of parallel task scheduling problem called Parallel Actor Scheduling (PAS) for chip-level MPSoC mapping of DSP systems that are represented as synchronous dataflow (SDF) graphs. In contrast to traditional SDF-based scheduling techniques, which focus on exploiting graph level (inter-actor) parallelism, the PAS problem targets the integrated exploitation of both intra- and inter-actor parallelism for platforms in which individual actors can be parallelized across multiple processing units. We address a special case of the PAS problem in which all of the actors in the DSP application or subsystem being optimized can be parallelized. For this special case, we develop and experimentally evaluate a two-phase scheduling framework with three work flows --- particle swarm optimization with a mixed integer programming formulation, particle swarm optimization with a simulated annealing engine, and particle swarm optimization with a fast heuristic based on list scheduling. Then, we extend our scheduling framework to support general PAS problem which considers the actors cannot be parallelized
    corecore