5 research outputs found

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Temperature aware power optimization for multicore floating-point units

    Full text link

    Sparse Signal Processing and Statistical Inference for Internet of Things

    Get PDF
    Data originating from many devices within the Internet of Things (IoT) framework can be modeled as sparse signals. Efficient compression techniques of such data are essential to reduce the memory storage, bandwidth, and transmission power. In this thesis, I develop some theory and propose practical schemes for IoT applications to exploit the signal sparsity for efficient data acquisition and compression under the frameworks of compressed sensing (CS) and transform coding. In the context of CS, the restricted isometry constant of finite Gaussian measurement matrices is investigated, based on the exact distributions of the extreme eigenvalues of Wishart matrices. The analysis determines how aggressively the signal can be sub-sampled and recovered from a small number of linear measurements. The signal reconstruction is guaranteed, with a predefined probability, via various recovery algorithms. Moreover, the measurement matrix design for simultaneously acquiring multiple signals is considered. This problem is important for IoT networks, where a huge number of nodes are involved. In this scenario, the presented analytical methods provide limits on the compression of joint sparse sources by analyzing the weak restricted isometry constant of Gaussian measurement matrices. Regarding transform coding, two efficient source encoders for noisy sparse sources are proposed, based on channel coding theory. The analytical performance is derived in terms of the operational rate-distortion and energy-distortion. Furthermore, a case study for the compression of real signals from a wireless sensor network using the proposed encoders is considered. These techniques can reduce the power consumption and increase the lifetime of IoT networks. Finally, a frame synchronization mechanism has been designed to achieve reliable radio links for IoT devices, where optimal and suboptimal metrics for noncoherent frame synchronization are derived. The proposed tests outperform the commonly used correlation detector, leading to accurate data extraction and reduced power consumption

    Multiterminal source coding for multiview images under wireless fading channels

    No full text
    This paper addresses the problem of wireless transmission of a captured scene from multiple cameras, which do not communicate among each other, to a joint decoder. Correlation among different camera views calls for distributed source coding for efficient multiview image compression. The fact that cameras are placed within a short range of each other results in a high level of interference, multipath fading, and noise effects during communications. We develop a novel two-camera system, that employs multiterminal source coding and complete complementary data spreading, so that while the former technique exploits the statistical correlation between camera views, and performs joint compression to reduce transmission rates, the spreading technique will protect transmitted data by mitigating the effects of wireless fading channels. Our results indicate that the proposed system is competitive when compared to two independently JPEG encoded streams at low to medium transmission rates
    corecore