265 research outputs found

    The contribution of multitemporal information from multispectral satellite images for automatic land cover classification at the national scale

    Get PDF
    Thesis submitted to the Instituto Superior de Estatística e Gestão de Informação da Universidade Nova de Lisboa in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Information Management – Geographic Information SystemsImaging and sensing technologies are constantly evolving so that, now, the latest generations of satellites commonly provide with Earth’s surface snapshots at very short sampling periods (i.e. daily images). It is unquestionable that this tendency towards continuous time observation will broaden up the scope of remotely sensed activities. Inevitable also, such increasing amount of information will prompt methodological approaches that combine digital image processing techniques with time series analysis for the characterization of land cover distribution and monitoring of its dynamics on a frequent basis. Nonetheless, quantitative analyses that convey the proficiency of three-dimensional satellite images data sets (i.e. spatial, spectral and temporal) for the automatic mapping of land cover and land cover time evolution have not been thoroughly explored. In this dissertation, we investigate the usefulness of multispectral time series sets of medium spatial resolution satellite images for the regular land cover characterization at the national scale. This study is carried out on the territory of Continental Portugal and exploits satellite images acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) and MEdium Resolution Imaging Spectrometer (MERIS). In detail, we first focus on the analysis of the contribution of multitemporal information from multispectral satellite images for the automatic land cover classes’ discrimination. The outcomes show that multispectral information contributes more significantly than multitemporal information for the automatic classification of land cover types. In the sequence, we review some of the most important steps that constitute a standard protocol for the automatic land cover mapping from satellite images. Moreover, we delineate a methodological approach for the production and assessment of land cover maps from multitemporal satellite images that guides us in the production of a land cover map with high thematic accuracy for the study area. Finally, we develop a nonlinear harmonic model for fitting multispectral reflectances and vegetation indices time series from satellite images for numerous land cover classes. The simplified multitemporal information retrieved with the model proves adequate to describe the main land cover classes’ characteristics and to predict the time evolution of land cover classes’individuals

    Mapping of peanut crops in Queensland, Australia using time-series PROBA-V 100-m normalized difference vegetation index imagery

    Get PDF
    Mapping of peanut crops is essential in supporting peanut production, yield prediction, and commodity forecasting. While ground-based surveys can be used over small areas, the development of remote-sensing technologies could provide rapid and inexpensive crop area estimates with high accuracy over large regions. Some of these recent earth observation satellite systems, such as the Project for On-Board Autonomy Vegetation (PROBA-V), have the advantage of increased spatial and temporal resolution. With a study area located in the South Burnett region, Queensland, Australia, the primary aim of this study was to assess the ability of time-series PROBA-V 100-m normalized difference vegetation index (NDVI) for peanut crop mapping. Two datasets, i.e., PROBA-V NDVI time-series imagery and the corresponding phenological parameters generated from TIMESAT data analysis technique, were classified using maximum likelihood classification, spectral angle mapper, and minimum distance classification algorithms. The results show that among all methods used, the application of MLC in PROBA-V NDVI time series produced very good overall accuracy, i.e., 92.75%, with producer and user accuracy of each class ≥78.79  %  . For all algorithms tested, the mapping of peanut cropping areas produced satisfactory classification results, i.e., 75.95% to 100%. Our study confirmed that the use of finer resolution 100 m of PROBA-V imagery (i.e., relative to MODIS 250-m data) has contributed to the success of mapping peanut and other crops in the study area

    Mapping intra- and inter-annual dynamics in wetlands with multispectral, thermal and SAR time series

    Get PDF
    Kartierung der intra- und interannuellen Dynamik von Feuchtgebieten mit multispektralen, thermischen und SAR-Zeitreihen Die Analyse der aktuellen räumlichen Verbreitung und der zeitlichen Entwicklung von Feuchtgebieten stellt eine äußerst komplexe Aufgabe dar, welche durch die Saisonalität, die schwierige Zugänglichkeit und die besonderen Eigenschaften als Ökoton bedingt ist. Erdbeobachtungssysteme sind somit das am besten geeignete Werkzeug, um zeitliche und räumliche Muster von Feuchtgebieten auf globaler Ebene zu beobachten (saisonale Veränderungen und Langzeit-Trends) und um den Einfluss der menschlichen Aktivitäten auf ihre physischen und biologischen Eigenschaften zu untersuchen. Zur Kartierung von raum-zeitlichen Mustern wurden Zeitreihen von Radar- (Sentinel-1), Multispektral- (Sentinel-2) und Thermal-Satellitendaten (MODIS) in fünf Untersuchungsgebieten, mit für Feuchtgebiete unterschiedlichen typischen Charakteristika, untersucht. In Kapitel 1 werden die Problematik in Bezug auf die Definition von Feuchtgebieten erläutert und allgemeine Degradations-Trends beschrieben. Die Kapitel 2 und 3 behandeln einen Algorithmus, der Veränderungen mithilfe von SAR-Zeitreihen feststellt, sowie die Vorteile des Cloud-Computings für das operationelle Monitoring saisonaler Muster und die Erkennung kurzfristig auftretender Veränderungen. In den Kapiteln 4 und 5 werden die zwei Hauptursachen für den Verlust von Feuchtgebieten betrachtet: der Staudammbau und die Ausdehnung landwirtschaftlicher Flächen. In Kapitel 4 werden dichte Zeitreihen multispektraler (Sentinel-2) und SAR-Daten (Sentinel-1) verwendet, um die Feuchtgebiete Albaniens – eines Landes in dem konträre Pläne zum Ausbau seines Wasserkraftpotentials und dem Schutz intakter Flussökosysteme zu Spannungen führen – landesweit zu kartieren. Die synergetischen Vorteile, die sich durch die Fusionierung von multispektralen und SAR-Daten für die Klassifikation ergeben, werden dabei herausgestellt. Kapitel 5 veranschaulicht, dass die Kilombero-Überschwemmungsebene in Tansania ein großes und bedeutendes Feuchtgebiet ist, das in den vergangenen Jahren infolge der weitgehend unkontrollierten Ausbreitung landwirtschaftlicher Flächen in seiner Ausdehnung und seiner Ökologie stark beeinträchtigt wurde. Um die Auswirkungen der Landnutzungsänderungen des Feuchtgebietes während der vergangenen 18 Jahre zu analysieren, wurden eine Zeitreihe (2000 bis 2017) thermaler Daten (MODIS) analysiert. Die drei für die Zeitreihenanalyse angewandten Modelle zeigen, wie landwirtschaftliche Praktiken die Landoberflächentemperatur in den landwirtschaftlich genutzten Gebieten sowie in den angrenzenden natürlichen Feuchtgebieten erhöht haben.Due to wetlands’ seasonality, their difficult access and ecotone character, determining their actual extension and trends over time is a complex task. Earth Observation systems are the most appropriate tool to monitor their spatio-temporal patterns (seasonal changes and long term trends) at global scales, and to study the effects that human activities have in their physical and biological properties. In this work I use time series of radar (Sentinel-1), multispectral (Sentinel-2) and thermal (MODIS) imagery to map the spatio-temporal patterns in 5 wetlands of different characteristics. First, I introduce in chapter 1 the problematic of wetlands’ definitions and their degradation trends. I continue with a brief introduction on remote sensing, time series analysis, and their applications on wetlands’ research and management. In chapters 2 and 3 I implement an algorithm for change detection of time series of Sentinel-1 images and demonstrate the advantages of cloud computation for operational monitoring. In chapters 4 and 5 I address two of the main causes of wetland degradation: dam building and agricultural expansion. In chapter 4 I use dense time series of Sentinel-1 and Sentinel-2 images map all the wetlands of Albania; a country struggling between developing its large hydropower potential or preserving its intact and valuable river ecosystems. I evaluate the synergic advantages of fusing multispectral and radar imagery in combination with knowledge-based rules to produce classification of higher thematic and spatial resolutions. In chapter 5 I present how the Kilombero Floodplain, in Tanzania, has been degraded during the last years due to uncontrolled farmland expansion. I use a time series of thermal imagery (MODIS) from 2000 until 2017 to analyze the effect of land use changes on the wetland. I compare three models for time series analysis and reveal how farming practices have increased the surface temperature of the farmed area, as well as in adjacent natural wetlands.Mapeo de las dinámicas inter- e intra-anuales en humedales con series temporales de imágenes multiespectrales, termales y de radar Debido a la estacionalidad de los humedales, su difícil acceso y sus características de ecotono, determinar su actual extensión y sus tendencias a lo largo del tiempo es una tarea compleja. Los sistemas de observación terrestres son la herramienta más apropiada para monitorear sus patrones espacio-temporales (estacionalidad y tendencias a largo plazo) a escalas globales, y para estudiar los efectos que las actividades humanas causan en sus propiedades físicas y biológicas. En esta tesis uso series temporales de imágenes radar (Sentinel-1), multiespectrales (Sentinel-2) y termales (MODIS) para mapear los patrones espacio-temporales de 5 humedales de diferentes características. En el capítulo 1 describo los retos que derivan de las diferentes definiciones que existen de los humedales. También presento las tendencias globales de degradación que la mayoría de los humedales continúan experimentando en los últimos años. Continúo con una breve introducción de los sistemas de teledetección remota, análisis de series temporales, y sus aplicaciones a la investigación y gestión de los humedales. En los capítulos 2 y 3 implemento un algoritmo de detección de cambios para series temporales de imágenes radar, y muestro las ventajas de usar sistemas de computación en la nube para monitorear cambios en la cobertura del suelo a corto plazo. En los capítulos 4 y 5 trato con dos de las causas más comunes de degradación de humedales: la construcción de presas y la expansión de la agricultura. En el capítulo 4 uso series temporales de imágenes multiespectrales (Sentinel-2) y radar (Sentinel-1) para mapear todos los humedales Albania; un país que se debate entre desarrollar su potencial hidroenergético o preservar sus valiosos e intactos ecosistemas de rivera. Mediante la fusión de imágenes radar y multiespectrales y el uso de reglas de decisión genero un mapa de suficiente resolución espacial y temática para que pueda ser usado por sectores interesados y gestores. En el capítulo 5 presento como las llanuras inundables de Kilombero, en Tanzania, han sido degradadas durante los últimos años debido a la expansión incontrolada de la agricultura. Usando series temporales de imágenes termales (MODIS) desde 2000 hasta 2017 y mapas de cambios de usos del suelo, determino los efectos que estos cambios han tenido en el humedal. Comparo 3 modelos diferentes de análisis de series temporales y muestro cómo la expansión de la agricultura ha incrementado la temperatura superficial terrestre, no solo de la zona cultivada, sino también de zonas adyacentes aún naturales

    Spectral Characteristics and Mapping of Rice Fields using Multi-Temporal Landsat and MODIS Data: A Case of District Narowal

    Get PDF
    Availability of remote sensed data provides powerful access to the spatial and temporal information of the earth surface Real-time earth observation data acquired during a cropping season can assist in assessing crop growth and development performance As remote sensed data is generally available at large scale rather than at field-plot level use of this information would help to improve crop management at broad-scale Utilizing the Landsat TM ETM ISODATA clustering algorithm and MODIS Terra the normalized difference vegetation index NDVI and enhanced vegetation index EVI datasets allowed the capturing of relevant rice cropping differences In this study we tried to analyze the MODIS Terra EVI NDVI February 2000 to February 2013 datasets for rice fractional yield estimation in Narowal Punjab province of Pakistan For large scale applications time integrated series of EVI NDVI 250-m spatial resolution offer a practical approach to measure crop production as they relate to the overall plant vigor and photosynthetic activity during the growing season The required data preparation for the integration of MODIS data into GIS is described with a focus on the projection from the MODIS Sinusoidal to the national coordinate systems However its low spatial resolution has been an impediment to researchers pursuing more accurate classification results and will support environmental planning to develop sustainable land-use practices These results have important implications for parameterization of land surface process models using biophysical variables estimated from remotely sensed data and assist for forthcoming rice fractional yield assessmen

    Exploring Spectral Data, Change Detection Information and Trajectories for Land Cover Monitoring over a Fire-Prone Area of Portugal

    Get PDF
    Alves, A.; Moraes, D.; Barbosa, B.; Costa, H.; Moreira, F.; Benevides, P.; Caetano, M. and Campagnolo, M. (2023). Exploring Spectral Data, Change Detection Information and Trajectories for Land Cover Monitoring over a Fire-Prone Area of Portugal. In Proceedings of the 9th International Conference on Geographical Information Systems Theory, Applications and Management - GISTAM; ISBN 978-989-758-649-1; ISSN 2184-500X, SciTePress, pages 87-97. DOI: 10.5220/0011993100003473---This research was conducted under the collaboration contract DGT-ISA 261/2021 with funding from Compete2020 (POCI-05-5762-FSE-000368), supported by the European Social Fund, and Centro Exploring Spectral Data, Change Detection Information and Trajectories for Land Cover Monitoring over a Fire-Prone Area of Portugal 95 de Investigação em Gestão de Informação (MagIC), Project UIDB/00239/2020 (Forest Research Centre), both supported by the Portuguese Foundation for Science and Technology (FCT)Land use/land cover (LULC) change detection and classification in maps based on automated data processing are becoming increasingly sophisticated in Earth Observation (EO). There is a growing number of annual maps available, with diverse but related production structures consisting primarily of classification and post-classification phases, the latter of which deals with inaccuracies of the first. The methodology production of the “Carta de Ocupação do Solo conjuntural” (COSc), a thematic land cover map of continental Portugal produced by the Directorate-General for Territory (DGT) mostly based on Sentinel-2 images classification, includes a semi-automatic phase of correction that combines expert knowledge and ancillary data in if-then-else rules validated by photointerpretation. Although this approach reduces misclassifications from an initial Random Forest (RF) prediction map, improving consistency between years and compliance with ecological succession, requires a lot of time-consuming semi-automatic procedures. This work evaluates the relevance of exploring an additional set of variables for automatic classification over disturbance-prone areas. A multitemporal dataset with 124 variables was analysed using data dimensionality reduction techniques, resulting in the identification of 35 major explanatory indicators, which were then used as inputs for RF classification with cross-validation. The estimated importance of the explanatory variables shows that composites of spectral bands, which are already included in the current COSc workflow, in conjunction with the inclusion of additional data namely, historical land cover information and change detection coefficients, from the Continuous Change Detection and Classification (CCDC) algorithm, are relevant for predicting land cover classes after disturbance. Since map updating is a more challenging task for disturbed pixels, we focused our analysis on locations where COSc indicated potential land cover change. Nonetheless, the overall classification accuracy for our experiments was 72.34 % which is similar to the accuracy of COSc for this region of Portugal. The findings suggest new variables that could improve future COSc maps.publishersversionpublishe

    Operationalization of Remote Sensing Solutions for Sustainable Forest Management

    Get PDF
    The great potential of remote sensing technologies for operational use in sustainable forest management is addressed in this book, which is the reprint of papers published in the Remote Sensing Special Issue “Operationalization of Remote Sensing Solutions for Sustainable Forest Management”. The studies come from three continents and cover multiple remote sensing systems (including terrestrial mobile laser scanning, unmanned aerial vehicles, airborne laser scanning, and satellite data acquisition) and a diversity of data processing algorithms, with a focus on machine learning approaches. The focus of the studies ranges from identification and characterization of individual trees to deriving national- or even continental-level forest attributes and maps. There are studies carefully describing exercises on the case study level, and there are also studies introducing new methodologies for transdisciplinary remote sensing applications. Even though most of the authors look forward to continuing their research, nearly all studies introduced are ready for operational use or have already been implemented in practical forestry

    Utilizing the Landsat spectral-temporal domain for improved mapping and monitoring of ecosystem state and dynamics

    Get PDF
    Just as the carbon dioxide observations that form the Keeling curve revolutionized the study of the global carbon cycle, free and open access to all available Landsat imagery is fundamentally changing how the Landsat record is being used to study ecosystems and ecological dynamics. This dissertation advances the use of Landsat time series for visualization, classification, and detection of changes in terrestrial ecological processes. More specifically, it includes new examples of how complex ecological patterns manifest in time series of Landsat observations, as well as novel approaches for detecting and quantifying these patterns. Exploration of the complexity of spectral-temporal patterns in the Landsat record reveals both seasonal variability and longer-term trajectories difficult to characterize using conventional bi-temporal or even annual observations. These examples provide empirical evidence of hypothetical ecosystem response functions proposed by Kennedy et al. (2014). Quantifying observed seasonal and phenological differences in the spectral reflectance of Massachusetts’ forest communities by combining existing harmonic curve fitting and phenology detection algorithms produces stable feature sets that consistently out-performed more traditional approaches for detailed forest type classification. This study addresses the current lack of species-level forest data at Landsat resolutions, demonstrating the advantages of spectral-temporal features as classification inputs. Development of a targeted change detection method using transformations of time series data improves spatial and temporal information on the occurrence of flood events in landscapes actively modified by recovering North American beaver (Castor canadensis) populations. These results indicate the utility of the Landsat record for the study of species-habitat relationships, even in complex wetland environments. Overall, this dissertation confirms the value of the Landsat archive as a continuous record of terrestrial ecosystem state and dynamics. Given the global coverage of remote sensing datasets, the time series visualization and analysis approaches presented here can be extended to other areas. These approaches will also be improved by more frequent collection of moderate resolution imagery, as planned by the Landsat and Sentinel-2 programs. In the modern era of global environmental change, use of the Landsat spectral-temporal domain presents new and exciting opportunities for the long-term large-scale study of ecosystem extent, composition, condition, and change

    Urban land cover mapping using medium spatial resolution satellite imageries: effectiveness of Decision Tree Classifier

    Get PDF
    The study is inserted in the framework of information extraction from satellite imageries for supporting rapid mapping activities, where information need to be extracted quickly and the elimination, also if partially, of manual digitalization procedures, can be considered a great breakthrough. The main aim of this study was therefore to develop algorithms for the extraction of urban layer by means of medium spatial resolution Landsat data processing; Decision Tree classifier was investigated as classification techniques, thus it allows to extract rules that can be later applied to different scenes. In particular, the aim was to evaluate which steps to perform in order to obtain a good classification procedure, mainly focusing on processing that can be applied to images and on training set features. The training set was evaluated on the basis of the number of classes to use for its creation, together with the temporal extension of the training set and input attributes, while images were submitted to different kind of radiometric pre and post-processing. The aim was the evaluation of the best variables to set for the creation of the training set, to be used for the classifier generation. Above-mentioned variables were compared and results evaluated on the basis of reached accuracies. Data used for the validation were derived from the Digital Regional Technical Ma

    Continuous change detection and classification of land cover using all available Landsat data

    Full text link
    Thesis (Ph.D.)--Boston UniversityLand cover mapping and monitoring has been widely recognized as important for understanding global change and in particular, human contributions. This research emphasizes the use ofthe time domain for mapping land cover and changes in land cover using satellite images. Unlike most prior methods that compare pairs or sets of images for identifying change, this research compares observations with model predictions. Moreover, instead of classifying satellite images directly, it uses coefficients from time series models as inputs for land cover mapping. The methods developed are capable of detecting many kinds of land cover change as they occur and providing land cover maps for any given time at high temporal frequency. One key processing step of the satellite images is the elimination of "noisy" observations due to clouds, cloud shadows, and snow. I developed a new algorithm called Fmask that processes each Landsat scene individually using an object-based method. For a globally distributed set ofreference data, the overall cloud detection accuracy is 96%. A second step further improves cloud detection by using temporal information. The first application ofthe new methods based on time series analysis found change in forests in an area in Georgia and South Carolina. After the difference between observed and predicted reflectance exceeds a threshold three consecutive times a site is identified as forest disturbance. Accuracy assessment reveals that both the producers and users accuracies are higher than 95% in the spatial domain and approximately 94% in the temporal domain. The second application ofthis new approach extends the algorithm to include identification of a wide variety of land cover changes as well as land cover mapping. In this approach, the entire archive of Landsat imagery is analyzed to produce a comprehensive land cover history ofthe Boston region. The results are accurate for detecting change, with producers accuracy of 98% and users accuracies of 86% in the spatial domain and temporal accuracy of 80%. Overall, this research demonstrates the great potential for use of time series analysis of satellite images to monitor land cover change

    Cybergis-enabled remote sensing data analytics for deep learning of landscape patterns and dynamics

    Get PDF
    Mapping landscape patterns and dynamics is essential to various scientific domains and many practical applications. The availability of large-scale and high-resolution light detection and ranging (LiDAR) remote sensing data provides tremendous opportunities to unveil complex landscape patterns and better understand landscape dynamics from a 3D perspective. LiDAR data have been applied to diverse remote sensing applications where large-scale landscape mapping is among the most important topics. While researchers have used LiDAR for understanding landscape patterns and dynamics in many fields, to fully reap the benefits and potential of LiDAR is increasingly dependent on advanced cyberGIS and deep learning approaches. In this context, the central goal of this dissertation is to develop a suite of innovative cyberGIS-enabled deep-learning frameworks for combining LiDAR and optical remote sensing data to analyze landscape patterns and dynamics with four interrelated studies. The first study demonstrates a high-accuracy land-cover mapping method by integrating 3D information from LiDAR with multi-temporal remote sensing data using a 3D deep-learning model. The second study combines a point-based classification algorithm and an object-oriented change detection strategy for urban building change detection using deep learning. The third study develops a deep learning model for accurate hydrological streamline detection using LiDAR, which has paved a new way of harnessing LiDAR data to map landscape patterns and dynamics at unprecedented computational and spatiotemporal scales. The fourth study resolves computational challenges in handling remote sensing big data and deep learning of landscape feature extraction and classification through a cutting-edge cyberGIS approach
    • …
    corecore