20 research outputs found

    A robust nonlinear scale space change detection approach for SAR images

    Get PDF
    In this paper, we propose a change detection approach based on nonlinear scale space analysis of change images for robust detection of various changes incurred by natural phenomena and/or human activities in Synthetic Aperture Radar (SAR) images using Maximally Stable Extremal Regions (MSERs). To achieve this, a variant of the log-ratio image of multitemporal images is calculated which is followed by Feature Preserving Despeckling (FPD) to generate nonlinear scale space images exhibiting different trade-offs in terms of speckle reduction and shape detail preservation. MSERs of each scale space image are found and then combined through a decision level fusion strategy, namely "selective scale fusion" (SSF), where contrast and boundary curvature of each MSER are considered. The performance of the proposed method is evaluated using real multitemporal high resolution TerraSAR-X images and synthetically generated multitemporal images composed of shapes with several orientations, sizes, and backscatter amplitude levels representing a variety of possible signatures of change. One of the main outcomes of this approach is that different objects having different sizes and levels of contrast with their surroundings appear as stable regions at different scale space images thus the fusion of results from scale space images yields a good overall performance

    A ROBUST NOISE-LESS METHOD TO OBTAIN NUMEROUS RESOLUTIONS IN SATELLITE IMAGES

    Get PDF
    An area-based active contour model will be put on the multi resolution representation from the difference image for segmenting the main difference image in to the “changed” and “unchanged” regions. Because of its sturdiness against noise, the undecimated discrete wavelet transform is exploited to acquire a multi resolution representation from the difference image that is acquired from two satellite images acquired in the same geographical area but at different time instances. Within this paper, and without supervision change recognition way of satellite images is suggested. The extensive simulation results show the suggested change recognition method consistently yields superior performance. The suggested change recognition method continues to be conducted on two kinds of image data sets, i.e., the synthetic aperture radar images and also the optical images. One exploits an adaptive decision threshold for minimizing the general change recognition error underneath the assumption the pixels from the difference image is spatially independent. The modification recognition answers are in contrast to several condition-of-the-art techniques

    Multi-resolution Active Models for Image Segmentation

    Get PDF
    Image segmentation refers to the process of subdividing an image into a set of non-overlapping regions. Image segmentation is a critical and essential step to almost all higher level image processing and pattern recognition approaches, where a good segmentation relieves higher level applications from considering irrelevant and noise data in the image. Image segmentation is also considered as the most challenging image processing step due to several reasons including spatial discontinuity of the region of interest and the absence of a universally accepted criteria for image segmentation. Among the huge number of segmentation approaches, active contour models or simply snakes receive a great attention in the literature. Where the contour/boundary of the region of interest is defined as the set of pixels at which the active contour reaches its equilibrium state. In general, two forces control the movement of the snake inside the image, internal force that prevents the snake from stretching and bending and external force that pulls the snake towards the desired object boundaries. One main limitation of active contour models is their sensitivity to image noise. Specifically, noise sensitivity leads the active contour to fail to properly converge, getting caught on spurious image features, preventing the iterative solver from taking large steps towards the final contour. Additionally, active contour initialization forms another type of limitation. Where, especially in noisy images, the active contour needs to be initialized relatively close to the object of interest, otherwise the active contour will be pulled by other non-real/spurious image features. This dissertation, aiming to improve the active model-based segmentation, introduces two models for building up the external force of the active contour. The first model builds up a scale-based-weighted gradient map from all resolutions of the undecimated wavelet transform, with preference given to coarse gradients over fine gradients. The undecimated wavelet transform, due to its near shift-invariance and the absence of down-sampling properties, produces well-localized gradient maps at all resolutions of the transform. Hence, the proposed final weighted gradient map is able to better drive the snake towards its final equilibrium state. Unlike other multiscale active contour algorithms that define a snake at each level of the hierarchy, our model defines a single snake with the external force field is simultaneously built based on gradient maps from all scales. The second model proposes the incorporation of the directional information, revealed by the dual tree complex wavelet transform (DT CWT), into the external force field of the active contour. At each resolution of the transform, a steerable set of convolution kernels is created and used for external force generation. In the proposed model, the size and the orientation of the kernels depend on the scale of the DT CWT and the local orientation statistics of each pixel. Experimental results using nature, synthetic and Optical Coherent Tomography (OCT) images reflect the superiority of the proposed models over the classical and the state-of-the-art models

    A Tutorial on Speckle Reduction in Synthetic Aperture Radar Images

    Get PDF
    Speckle is a granular disturbance, usually modeled as a multiplicative noise, that affects synthetic aperture radar (SAR) images, as well as all coherent images. Over the last three decades, several methods have been proposed for the reduction of speckle, or despeckling, in SAR images. Goal of this paper is making a comprehensive review of despeckling methods since their birth, over thirty years ago, highlighting trends and changing approaches over years. The concept of fully developed speckle is explained. Drawbacks of homomorphic filtering are pointed out. Assets of multiresolution despeckling, as opposite to spatial-domain despeckling, are highlighted. Also advantages of undecimated, or stationary, wavelet transforms over decimated ones are discussed. Bayesian estimators and probability density function (pdf) models in both spatial and multiresolution domains are reviewed. Scale-space varying pdf models, as opposite to scale varying models, are promoted. Promising methods following non-Bayesian approaches, like nonlocal (NL) filtering and total variation (TV) regularization, are reviewed and compared to spatial- and wavelet-domain Bayesian filters. Both established and new trends for assessment of despeckling are presented. A few experiments on simulated data and real COSMO-SkyMed SAR images highlight, on one side the costperformance tradeoff of the different methods, on the other side the effectiveness of solutions purposely designed for SAR heterogeneity and not fully developed speckle. Eventually, upcoming methods based on new concepts of signal processing, like compressive sensing, are foreseen as a new generation of despeckling, after spatial-domain and multiresolution-domain method

    A Hybrid Particle Swarm Optimization with Affine Transformation Approach for Cloud Free Multi-Temporal Image Registration

    Get PDF
    An image registration is the major part of the image categorization and cluster formation in multi temporal image processing. The images are affected by the different factors such as cloud shadow, water level, building shadows etc. In this paper, an enhanced registration process and the cloud removal technique is proposed for image enhancement. The Daemons, Combined Registration and Segmentation (CRS) approach, Markov Random Field (MRF) approach and Mutual Information (MI) based approaches results in more computational complexity, minimum edge preservation measure (QAB/F) and Mutual Information in image registration. In order to maximize the quality of edge preservation measure and MI with minimum computational time, this paper proposes Particle Swarm Optimization (PSO) based affine transformation technique. The proposed techniques measure and compare the computation time against the number of pixels of an image with the existing methods of CRS and MRF for the number of images. The comparative analysis of QAB/F and MI with the traditional methods of Clock Point -Least Square (CP-LS) and the Multi-Focus Image Fusion (MFIF) and Discrete Wavelet Transform (DWT) is presented to confirm the effective performance. The simulation results of the proposed transformation for registration process confirms the effective image registration in the multi-temporal image processing

    A markovian approach to unsupervised change detection with multiresolution and multimodality SAR data

    Get PDF
    In the framework of synthetic aperture radar (SAR) systems, current satellite missions make it possible to acquire images at very high and multiple spatial resolutions with short revisit times. This scenario conveys a remarkable potential in applications to, for instance, environmental monitoring and natural disaster recovery. In this context, data fusion and change detection methodologies play major roles. This paper proposes an unsupervised change detection algorithmfor the challenging case of multimodal SAR data collected by sensors operating atmultiple spatial resolutions. The method is based on Markovian probabilistic graphical models, graph cuts, linear mixtures, generalized Gaussian distributions, Gram-Charlier approximations, maximum likelihood and minimum mean squared error estimation. It benefits from the SAR images acquired at multiple spatial resolutions and with possibly different modalities on the considered acquisition times to generate an output change map at the finest observed resolution. This is accomplished by modeling the statistics of the data at the various spatial scales through appropriate generalized Gaussian distributions and by iteratively estimating a set of virtual images that are defined on the pixel grid at the finest resolution and would be collected if all the sensors could work at that resolution. A Markov random field framework is adopted to address the detection problem by defining an appropriate multimodal energy function that is minimized using graph cuts

    Unsupervised multi-scale change detection from SAR imagery for monitoring natural and anthropogenic disasters

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2017Radar remote sensing can play a critical role in operational monitoring of natural and anthropogenic disasters. Despite its all-weather capabilities, and its high performance in mapping, and monitoring of change, the application of radar remote sensing in operational monitoring activities has been limited. This has largely been due to: (1) the historically high costs associated with obtaining radar data; (2) slow data processing, and delivery procedures; and (3) the limited temporal sampling that was provided by spaceborne radar-based satellites. Recent advances in the capabilities of spaceborne Synthetic Aperture Radar (SAR) sensors have developed an environment that now allows for SAR to make significant contributions to disaster monitoring. New SAR processing strategies that can take full advantage of these new sensor capabilities are currently being developed. Hence, with this PhD dissertation, I aim to: (i) investigate unsupervised change detection techniques that can reliably extract signatures from time series of SAR images, and provide the necessary flexibility for application to a variety of natural, and anthropogenic hazard situations; (ii) investigate effective methods to reduce the effects of speckle and other noise on change detection performance; (iii) automate change detection algorithms using probabilistic Bayesian inferencing; and (iv) ensure that the developed technology is applicable to current, and future SAR sensors to maximize temporal sampling of a hazardous event. This is achieved by developing new algorithms that rely on image amplitude information only, the sole image parameter that is available for every single SAR acquisition. The motivation and implementation of the change detection concept are described in detail in Chapter 3. In the same chapter, I demonstrated the technique's performance using synthetic data as well as a real-data application to map wildfire progression. I applied Radiometric Terrain Correction (RTC) to the data to increase the sampling frequency, while the developed multiscaledriven approach reliably identified changes embedded in largely stationary background scenes. With this technique, I was able to identify the extent of burn scars with high accuracy. I further applied the application of the change detection technology to oil spill mapping. The analysis highlights that the approach described in Chapter 3 can be applied to this drastically different change detection problem with only little modification. While the core of the change detection technique remained unchanged, I made modifications to the pre-processing step to enable change detection from scenes of continuously varying background. I introduced the Lipschitz regularity (LR) transformation as a technique to normalize the typically dynamic ocean surface, facilitating high performance oil spill detection independent of environmental conditions during image acquisition. For instance, I showed that LR processing reduces the sensitivity of change detection performance to variations in surface winds, which is a known limitation in oil spill detection from SAR. Finally, I applied the change detection technique to aufeis flood mapping along the Sagavanirktok River. Due to the complex nature of aufeis flooded areas, I substituted the resolution-preserving speckle filter used in Chapter 3 with curvelet filters. In addition to validating the performance of the change detection results, I also provide evidence of the wealth of information that can be extracted about aufeis flooding events once a time series of change detection information was extracted from SAR imagery. A summary of the developed change detection techniques is conducted and suggested future work is presented in Chapter 6

    CHANGE DETECTION BY FUSING ADVANTAGES OF THRESHOLD AND CLUSTERING METHODS

    Get PDF

    Blind Yield Detection in Steel Structure for Automatic Nondestructive Testing Using Ultrasonic Sensors

    Get PDF
    Detection of yield zones using nondestructive testing (NDT) technology for assessing the structural integrity of the existing steel buildings/bridges is extremely important. The average energy over the “effective echoes” (in “good” signal quality) is a robust feature for the yield detection in steel structures. Nevertheless, this average-energy feature extraction requires rigorous manual data-acquisition and human operation. Therefore, in this thesis, we make the first-ever attempt to design a totally-blind and automatic steel-structure yielddetection mechanism, which requires neither the a priori information about the signal nor the human effort in calibration, operation, or data analysis. This new scheme is built upon a robust preprocessor, which involves both blind-signature-signal-extraction and zero-crossingrate thresholding, to identify the starting and terminal time points of each ultrasonic echo. Thus, the new computer-aided system can easily estimate the signal-to-noise ratios and automatically extract the effective echoes to calculate the corresponding average energy. The performance reflected by the receiver-operating characteristic (ROC) curves of the proposed method is very close to that of the conventional human-operating technique. Hence one may save much human effort in the sacrifice of very little detection accuracy by using our proposed new system
    corecore