101 research outputs found

    The Impact of Parallel Processing on Operating Systems

    Get PDF
    The base entity in computer programming is the process or task. The parallelism can be achieved by executing multiple processes on different processors. Distributed systems are managed by distributed operating systems that represent the extension for multiprocessor architectures of multitasking and multiprogramming operating systems.

    FIFTY YEARS OF MICROPROCESSOR EVOLUTION: FROM SINGLE CPU TO MULTICORE AND MANYCORE SYSTEMS

    Get PDF
    Nowadays microprocessors are among the most complex electronic systems that man has ever designed. One small silicon chip can contain the complete processor, large memory and logic needed to connect it to the input-output devices. The performance of today's processors implemented on a single chip surpasses the performance of a room-sized supercomputer from just 50 years ago, which cost over $ 10 million [1]. Even the embedded processors found in everyday devices such as mobile phones are far more powerful than computer developers once imagined. The main components of a modern microprocessor are a number of general-purpose cores, a graphics processing unit, a shared cache, memory and input-output interface and a network on a chip to interconnect all these components [2]. The speed of the microprocessor is determined by its clock frequency and cannot exceed a certain limit. Namely, as the frequency increases, the power dissipation increases too, and consequently the amount of heating becomes critical. So, silicon manufacturers decided to design new processor architecture, called multicore processors [3]. With aim to increase performance and efficiency these multiple cores execute multiple instructions simultaneously. In this way, the amount of parallel computing or parallelism is increased [4]. In spite of mentioned advantages, numerous challenges must be addressed carefully when more cores and parallelism are used.This paper presents a review of microprocessor microarchitectures, discussing their generations over the past 50 years. Then, it describes the currently used implementations of the microarchitecture of modern microprocessors, pointing out the specifics of parallel computing in heterogeneous microprocessor systems. To use efficiently the possibility of multi-core technology, software applications must be multithreaded. The program execution must be distributed among the multi-core processors so they can operate simultaneously. To use multi-threading, it is imperative for programmer to understand the basic principles of parallel computing and parallel hardware. Finally, the paper provides details how to implement hardware parallelism in multicore systems

    MURAC: A unified machine model for heterogeneous computers

    Get PDF
    Includes bibliographical referencesHeterogeneous computing enables the performance and energy advantages of multiple distinct processing architectures to be efficiently exploited within a single machine. These systems are capable of delivering large performance increases by matching the applications to architectures that are most suited to them. The Multiple Runtime-reconfigurable Architecture Computer (MURAC) model has been proposed to tackle the problems commonly found in the design and usage of these machines. This model presents a system-level approach that creates a clear separation of concerns between the system implementer and the application developer. The three key concepts that make up the MURAC model are a unified machine model, a unified instruction stream and a unified memory space. A simple programming model built upon these abstractions provides a consistent interface for interacting with the underlying machine to the user application. This programming model simplifies application partitioning between hardware and software and allows the easy integration of different execution models within the single control ow of a mixed-architecture application. The theoretical and practical trade-offs of the proposed model have been explored through the design of several systems. An instruction-accurate system simulator has been developed that supports the simulated execution of mixed-architecture applications. An embedded System-on-Chip implementation has been used to measure the overhead in hardware resources required to support the model, which was found to be minimal. An implementation of the model within an operating system on a tightly-coupled reconfigurable processor platform has been created. This implementation is used to extend the software scheduler to allow for the full support of mixed-architecture applications in a multitasking environment. Different scheduling strategies have been tested using this scheduler for mixed-architecture applications. The design and implementation of these systems has shown that a unified abstraction model for heterogeneous computers provides important usability benefits to system and application designers. These benefits are achieved through a consistent view of the multiple different architectures to the operating system and user applications. This allows them to focus on achieving their performance and efficiency goals by gaining the benefits of different execution models during runtime without the complex implementation details of the system-level synchronisation and coordination

    Reconciling Repeatable Timing with Pipelining and Memory Hierarchy

    Get PDF
    This paper argues that repeatable timing is more important and more achievable than predictable timing. It describes microarchitecture approaches to pipelining and memory hierarchy that deliver repeatable timing and promise comparable or better performance compared to established techniques. Specifically, threads are interleaved in a pipeline to eliminate pipeline hazards, and a hierarchical memory architecture is outlined that hides memory latencies

    Communicating Java Threads

    Get PDF
    The incorporation of multithreading in Java may be considered a significant part of the Java language, because it provides udimentary facilities for concurrent programming. However, we belief that the use of channels is a fundamental concept for concurrent programming. The channel approach as described in this paper is a realization of a systematic design method for concurrent programming in Java based on the CSP paradigm. CSP requires the availability of a Channel class and the addition of composition constructs for sequential, parallel and alternative processes. The Channel class and the constructs have been implemented in Java in compliance with the definitions in CSP. As a result, implementing communication between processes is facilitated, enabling the programmer to avoid deadlock more easily, and freeing the programmer from synchronization and scheduling constructs. The use of the Channel class and the additional constructs is illustrated in a simple application

    Exploiting Hardware Abstraction for Parallel Programming Framework: Platform and Multitasking

    Get PDF
    With the help of the parallelism provided by the fine-grained architecture, hardware accelerators on Field Programmable Gate Arrays (FPGAs) can significantly improve the performance of many applications. However, designers are required to have excellent hardware programming skills and unique optimization techniques to explore the potential of FPGA resources fully. Intermediate frameworks above hardware circuits are proposed to improve either performance or productivity by leveraging parallel programming models beyond the multi-core era. In this work, we propose the PolyPC (Polymorphic Parallel Computing) framework, which targets enhancing productivity without losing performance. It helps designers develop parallelized applications and implement them on FPGAs. The PolyPC framework implements a custom hardware platform, on which programs written in an OpenCL-like programming model can launch. Additionally, the PolyPC framework extends vendor-provided tools to provide a complete development environment including intermediate software framework, and automatic system builders. Designers\u27 programs can be either synthesized as hardware processing elements (PEs) or compiled to executable files running on software PEs. Benefiting from nontrivial features of re-loadable PEs, and independent group-level schedulers, the multitasking is enabled for both software and hardware PEs to improve the efficiency of utilizing hardware resources. The PolyPC framework is evaluated regarding performance, area efficiency, and multitasking. The results show a maximum 66 times speedup over a dual-core ARM processor and 1043 times speedup over a high-performance MicroBlaze with 125 times of area efficiency. It delivers a significant improvement in response time to high-priority tasks with the priority-aware scheduling. Overheads of multitasking are evaluated to analyze trade-offs. With the help of the design flow, the OpenCL application programs are converted into executables through the front-end source-to-source transformation and back-end synthesis/compilation to run on PEs, and the framework is generated from users\u27 specifications

    Virtualization for a Network Processor Runtime System

    Get PDF
    The continuing ossification of the Internet is slowing the pace of network innovation. Network diversification presents one solution to this problem, by virtualizing the network at multiple layers. Diversified networks consist of a shared physical substrate, virtual routers (metarouters), and virtual links (metalinks). Virtualizing routers enables smooth and incremental upgrades to new network services. Our current priority for a diversified router prototype is to enable reserved slices of the network for researchers to perform repeatable, high-speed network experiments. General-purpose processors have well established techniques for virtualization, but do not scale efficiently to multi-gigabit speeds. To achieve these speeds, we employ network processors (NPs), typically consisting of multicore, multi-threaded processors with asymmetric, heterogeneous memories. The complexity and lack of hardware thread isolation in NPā€™s, combined with a lack of simple programming models, creates numerous challenges for effective sharing between metarouters. In this paper, we detail strategies for enabling NP virtualization at the link, memory, and processor levels, to better enable a research infrastructure for network innovation
    • ā€¦
    corecore