198 research outputs found

    Leveraging native language information for improved accented speech recognition

    Full text link
    Recognition of accented speech is a long-standing challenge for automatic speech recognition (ASR) systems, given the increasing worldwide population of bi-lingual speakers with English as their second language. If we consider foreign-accented speech as an interpolation of the native language (L1) and English (L2), using a model that can simultaneously address both languages would perform better at the acoustic level for accented speech. In this study, we explore how an end-to-end recurrent neural network (RNN) trained system with English and native languages (Spanish and Indian languages) could leverage data of native languages to improve performance for accented English speech. To this end, we examine pre-training with native languages, as well as multi-task learning (MTL) in which the main task is trained with native English and the secondary task is trained with Spanish or Indian Languages. We show that the proposed MTL model performs better than the pre-training approach and outperforms a baseline model trained simply with English data. We suggest a new setting for MTL in which the secondary task is trained with both English and the native language, using the same output set. This proposed scenario yields better performance with +11.95% and +17.55% character error rate gains over baseline for Hispanic and Indian accents, respectively.Comment: Accepted at Interspeech 201

    Self-Attention Networks for Connectionist Temporal Classification in Speech Recognition

    Full text link
    The success of self-attention in NLP has led to recent applications in end-to-end encoder-decoder architectures for speech recognition. Separately, connectionist temporal classification (CTC) has matured as an alignment-free, non-autoregressive approach to sequence transduction, either by itself or in various multitask and decoding frameworks. We propose SAN-CTC, a deep, fully self-attentional network for CTC, and show it is tractable and competitive for end-to-end speech recognition. SAN-CTC trains quickly and outperforms existing CTC models and most encoder-decoder models, with character error rates (CERs) of 4.7% in 1 day on WSJ eval92 and 2.8% in 1 week on LibriSpeech test-clean, with a fixed architecture and one GPU. Similar improvements hold for WERs after LM decoding. We motivate the architecture for speech, evaluate position and downsampling approaches, and explore how label alphabets (character, phoneme, subword) affect attention heads and performance.Comment: Accepted to ICASSP 201

    Transfer Learning for Speech Recognition on a Budget

    Full text link
    End-to-end training of automated speech recognition (ASR) systems requires massive data and compute resources. We explore transfer learning based on model adaptation as an approach for training ASR models under constrained GPU memory, throughput and training data. We conduct several systematic experiments adapting a Wav2Letter convolutional neural network originally trained for English ASR to the German language. We show that this technique allows faster training on consumer-grade resources while requiring less training data in order to achieve the same accuracy, thereby lowering the cost of training ASR models in other languages. Model introspection revealed that small adaptations to the network's weights were sufficient for good performance, especially for inner layers.Comment: Accepted for 2nd ACL Workshop on Representation Learning for NL

    Long-Running Speech Recognizer:An End-to-End Multi-Task Learning Framework for Online ASR and VAD

    Full text link
    When we use End-to-end automatic speech recognition (E2E-ASR) system for real-world applications, a voice activity detection (VAD) system is usually needed to improve the performance and to reduce the computational cost by discarding non-speech parts in the audio. This paper presents a novel end-to-end (E2E), multi-task learning (MTL) framework that integrates ASR and VAD into one model. The proposed system, which we refer to as Long-Running Speech Recognizer (LR-SR), learns ASR and VAD jointly from two seperate task-specific datasets in the training stage. With the assistance of VAD, the ASR performance improves as its connectionist temporal classification (CTC) loss function can leverage the VAD alignment information. In the inference stage, the LR-SR system removes non-speech parts at low computational cost and recognizes speech parts with high robustness. Experimental results on segmented speech data show that the proposed MTL framework outperforms the baseline single-task learning (STL) framework in ASR task. On unsegmented speech data, we find that the LR-SR system outperforms the baseline ASR systems that build an extra GMM-based or DNN-based voice activity detector.Comment: 5 pages, 2 figure
    corecore