631 research outputs found

    Adaptation and learning over networks for nonlinear system modeling

    Full text link
    In this chapter, we analyze nonlinear filtering problems in distributed environments, e.g., sensor networks or peer-to-peer protocols. In these scenarios, the agents in the environment receive measurements in a streaming fashion, and they are required to estimate a common (nonlinear) model by alternating local computations and communications with their neighbors. We focus on the important distinction between single-task problems, where the underlying model is common to all agents, and multitask problems, where each agent might converge to a different model due to, e.g., spatial dependencies or other factors. Currently, most of the literature on distributed learning in the nonlinear case has focused on the single-task case, which may be a strong limitation in real-world scenarios. After introducing the problem and reviewing the existing approaches, we describe a simple kernel-based algorithm tailored for the multitask case. We evaluate the proposal on a simulated benchmark task, and we conclude by detailing currently open problems and lines of research.Comment: To be published as a chapter in `Adaptive Learning Methods for Nonlinear System Modeling', Elsevier Publishing, Eds. D. Comminiello and J.C. Principe (2018

    Meta-Learning via Classifier(-free) Guidance

    Full text link
    State-of-the-art meta-learning techniques do not optimize for zero-shot adaptation to unseen tasks, a setting in which humans excel. On the contrary, meta-learning algorithms learn hyperparameters and weight initializations that explicitly optimize for few-shot learning performance. In this work, we take inspiration from recent advances in generative modeling and language-conditioned image synthesis to propose meta-learning techniques that use natural language guidance to achieve higher zero-shot performance compared to the state-of-the-art. We do so by recasting the meta-learning problem as a multi-modal generative modeling problem: given a task, we consider its adapted neural network weights and its natural language description as equivalent multi-modal task representations. We first train an unconditional generative hypernetwork model to produce neural network weights; then we train a second "guidance" model that, given a natural language task description, traverses the hypernetwork latent space to find high-performance task-adapted weights in a zero-shot manner. We explore two alternative approaches for latent space guidance: "HyperCLIP"-based classifier guidance and a conditional Hypernetwork Latent Diffusion Model ("HyperLDM"), which we show to benefit from the classifier-free guidance technique common in image generation. Finally, we demonstrate that our approaches outperform existing meta-learning methods with zero-shot learning experiments on our Meta-VQA dataset, which we specifically constructed to reflect the multi-modal meta-learning setting

    Robust Distributed Clustering Algorithm Over Multitask Networks

    Get PDF
    We propose a new adaptive clustering algorithm that is robust to various multitask environments. Positional relationships among optimal vectors and a reference signal are determined by using the mean-square deviation relation derived from a one-step least-mean-square update. Clustering is performed by combining determinations on the positional relationships at several iterations. From this geometrical basis, unlike the conventional clustering algorithms using simple thresholding method, the proposed algorithm can perform clustering accurately in various multitask environments. Simulation results show that the proposed algorithm has more accurate estimation accuracy than the conventional algorithms and is insensitive to parameter selection.11Ysciescopu

    Efficient Large-Scale Visual Representation Learning

    Full text link
    In this article, we present our approach to single-modality visual representation learning. Understanding visual representations of product content is vital for recommendations, search, and advertising applications in e-commerce. We detail and contrast techniques used to fine-tune large-scale visual representation learning models in an efficient manner under low-resource settings, including several pretrained backbone architectures, both in the convolutional neural network as well as the vision transformer family. We highlight the challenges for e-commerce applications at-scale and highlight the efforts to more efficiently train, evaluate, and serve visual representations. We present ablation studies evaluating the representation offline performance for several downstream tasks, including our visually similar ad recommendations. To this end, we present a novel text-to-image generative offline evaluation method for visually similar recommendation systems. Finally, we include online results from deployed machine learning systems in production at Etsy

    An Event-based Diffusion LMS Strategy

    Full text link
    We consider a wireless sensor network consists of cooperative nodes, each of them keep adapting to streaming data to perform a least-mean-squares estimation, and also maintain information exchange among neighboring nodes in order to improve performance. For the sake of reducing communication overhead, prolonging batter life while preserving the benefits of diffusion cooperation, we propose an energy-efficient diffusion strategy that adopts an event-based communication mechanism, which allow nodes to cooperate with neighbors only when necessary. We also study the performance of the proposed algorithm, and show that its network mean error and MSD are bounded in steady state. Numerical results demonstrate that the proposed method can effectively reduce the network energy consumption without sacrificing steady-state network MSD performance significantly
    corecore