151 research outputs found

    Using multitask classification methods to investigate the kinase-specific phosphorylation sites

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Identification of phosphorylation sites by computational methods is becoming increasingly important because it reduces labor-intensive and costly experiments and can improve our understanding of the common properties and underlying mechanisms of protein phosphorylation.</p> <p>Methods</p> <p>A multitask learning framework for learning four kinase families simultaneously, instead of studying each kinase family of phosphorylation sites separately, is presented in the study. The framework includes two multitask classification methods: the Multi-Task Least Squares Support Vector Machines (MTLS-SVMs) and the Multi-Task Feature Selection (MT-Feat3).</p> <p>Results</p> <p>Using the multitask learning framework, we successfully identify 18 common features shared by four kinase families of phosphorylation sites. The reliability of selected features is demonstrated by the consistent performance in two multi-task learning methods.</p> <p>Conclusions</p> <p>The selected features can be used to build efficient multitask classifiers with good performance, suggesting they are important to protein phosphorylation across 4 kinase families.</p

    Deep Learning for Genomics: A Concise Overview

    Full text link
    Advancements in genomic research such as high-throughput sequencing techniques have driven modern genomic studies into "big data" disciplines. This data explosion is constantly challenging conventional methods used in genomics. In parallel with the urgent demand for robust algorithms, deep learning has succeeded in a variety of fields such as vision, speech, and text processing. Yet genomics entails unique challenges to deep learning since we are expecting from deep learning a superhuman intelligence that explores beyond our knowledge to interpret the genome. A powerful deep learning model should rely on insightful utilization of task-specific knowledge. In this paper, we briefly discuss the strengths of different deep learning models from a genomic perspective so as to fit each particular task with a proper deep architecture, and remark on practical considerations of developing modern deep learning architectures for genomics. We also provide a concise review of deep learning applications in various aspects of genomic research, as well as pointing out potential opportunities and obstacles for future genomics applications.Comment: Invited chapter for Springer Book: Handbook of Deep Learning Application

    Multitask Learning of Vegetation Biochemistry from Hyperspectral Data

    Get PDF
    Statistical models have been successful in accurately estimating the biochemical contents of vegetation from the reflectance spectra. However, their performance deteriorates when there is a scarcity of sizable amount of ground truth data for modeling the complex non-linear relationship occurring between the spectrum and the biochemical quantity. We propose a novel Gaussian process based multitask learning method for improving the prediction of a biochemical through the transfer of knowledge from the learned models for predicting related biochemicals. This method is most advantageous when there are few ground truth data for the biochemical of interest, but plenty of ground truth data for related biochemicals. The proposed multitask Gaussian process hypothesizes that the inter-relationship between the biochemical quantities is better modeled by using a combination of two or more covariance functions and inter-task correlation matrices. In the experiments, our method outperformed the current methods on two real-world datasets

    タンパク質の機能予測のための深層転移学習法に関する研究

    Get PDF
    早大学位記番号:新9098早稲田大

    Deep Artificial Neural Networks and Neuromorphic Chips for Big Data Analysis: Pharmaceutical and Bioinformatics Applications

    Get PDF
    [Abstract] Over the past decade, Deep Artificial Neural Networks (DNNs) have become the state-of-the-art algorithms in Machine Learning (ML), speech recognition, computer vision, natural language processing and many other tasks. This was made possible by the advancement in Big Data, Deep Learning (DL) and drastically increased chip processing abilities, especially general-purpose graphical processing units (GPGPUs). All this has created a growing interest in making the most of the potential offered by DNNs in almost every field. An overview of the main architectures of DNNs, and their usefulness in Pharmacology and Bioinformatics are presented in this work. The featured applications are: drug design, virtual screening (VS), Quantitative Structure–Activity Relationship (QSAR) research, protein structure prediction and genomics (and other omics) data mining. The future need of neuromorphic hardware for DNNs is also discussed, and the two most advanced chips are reviewed: IBM TrueNorth and SpiNNaker. In addition, this review points out the importance of considering not only neurons, as DNNs and neuromorphic chips should also include glial cells, given the proven importance of astrocytes, a type of glial cell which contributes to information processing in the brain. The Deep Artificial Neuron–Astrocyte Networks (DANAN) could overcome the difficulties in architecture design, learning process and scalability of the current ML methods.Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; GRC2014/049Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; R2014/039Instituto de Salud Carlos III; PI13/0028
    corecore