2,351 research outputs found

    Pitch-informed instrument assignment using a deep convolutional network with multiple kernel shapes

    Get PDF
    This paper proposes a deep convolutional neural network for performing note-level instrument assignment. Given a polyphonic multi-instrumental music signal along with its ground truth or predicted notes, the objective is to assign an instrumental source for each note. This problem is addressed as a pitch-informed classification task where each note is analysed individually. We also propose to utilise several kernel shapes in the convolutional layers in order to facilitate learning of timbre-discriminative feature maps. Experiments on the MusicNet dataset using 7 instrument classes show that our approach is able to achieve an average F-score of 0.904 when the original multi-pitch annotations are used as the pitch information for the system, and that it also excels if the note information is provided using third-party multi-pitch estimation algorithms. We also include ablation studies investigating the effects of the use of multiple kernel shapes and comparing different input representations for the audio and the note-related information

    Multi-Task Video Captioning with Video and Entailment Generation

    Full text link
    Video captioning, the task of describing the content of a video, has seen some promising improvements in recent years with sequence-to-sequence models, but accurately learning the temporal and logical dynamics involved in the task still remains a challenge, especially given the lack of sufficient annotated data. We improve video captioning by sharing knowledge with two related directed-generation tasks: a temporally-directed unsupervised video prediction task to learn richer context-aware video encoder representations, and a logically-directed language entailment generation task to learn better video-entailed caption decoder representations. For this, we present a many-to-many multi-task learning model that shares parameters across the encoders and decoders of the three tasks. We achieve significant improvements and the new state-of-the-art on several standard video captioning datasets using diverse automatic and human evaluations. We also show mutual multi-task improvements on the entailment generation task.Comment: ACL 2017 (14 pages w/ supplementary

    Comparative validation of machine learning algorithms for surgical workflow and skill analysis with the HeiChole benchmark

    Get PDF
    Purpose: Surgical workflow and skill analysis are key technologies for the next generation of cognitive surgical assistance systems. These systems could increase the safety of the operation through context-sensitive warnings and semi-autonomous robotic assistance or improve training of surgeons via data-driven feedback. In surgical workflow analysis up to 91% average precision has been reported for phase recognition on an open data single-center video dataset. In this work we investigated the generalizability of phase recognition algorithms in a multicenter setting including more difficult recognition tasks such as surgical action and surgical skill. Methods: To achieve this goal, a dataset with 33 laparoscopic cholecystectomy videos from three surgical centers with a total operation time of 22 h was created. Labels included framewise annotation of seven surgical phases with 250 phase transitions, 5514 occurences of four surgical actions, 6980 occurences of 21 surgical instruments from seven instrument categories and 495 skill classifications in five skill dimensions. The dataset was used in the 2019 international Endoscopic Vision challenge, sub-challenge for surgical workflow and skill analysis. Here, 12 research teams trained and submitted their machine learning algorithms for recognition of phase, action, instrument and/or skill assessment. Results: F1-scores were achieved for phase recognition between 23.9% and 67.7% (n = 9 teams), for instrument presence detection between 38.5% and 63.8% (n = 8 teams), but for action recognition only between 21.8% and 23.3% (n = 5 teams). The average absolute error for skill assessment was 0.78 (n = 1 team). Conclusion: Surgical workflow and skill analysis are promising technologies to support the surgical team, but there is still room for improvement, as shown by our comparison of machine learning algorithms. This novel HeiChole benchmark can be used for comparable evaluation and validation of future work. In future studies, it is of utmost importance to create more open, high-quality datasets in order to allow the development of artificial intelligence and cognitive robotics in surgery
    • …
    corecore