38 research outputs found

    Pattern-theoretic foundations of automatic target recognition in clutter

    Get PDF
    Issued as final reportAir Force Office of Scientific Research (U.S.

    Beyond the spatio-temporal limits of atmospheric radars: inverse problem techniques and MIMO systems

    Get PDF
    The Earth’s upper atmosphere (UA) is a highly dynamic region dominated by atmospheric waves and stratified turbulence covering a wide range of spatio-temporal scales. A comprehensive study of the UA requires measurements over a broad range of frequencies and spatial wavelengths, which are prohibitively costly. To improve the understanding of the UA, an investment in efficient and large observational infrastructures is required. This work investigates remote sensing techniques based on MIMO and inverse problems techniques to improve the capabilities of current atmospheric radars

    Adaptive waveform design for cognitive radar

    Get PDF
    Advances in technology, especially in sensing, robotics, wireless communications, hardware capabilities and the constant need to confront not only the existing but also new and advanced threats are pushing for the need of advanced radar techniques. In this context, Cognitive Radar (CR) is visualized as the next generation multifunctional, smart and adaptive radar that extends its capabilities and responsibilities far beyond the traditional radar. CR incorporates knowledge gained by the interaction with the environment into its operation therefore forming a closed-loop system aiming to enhance the system performance. A very important element of the CR operation is the ability to adaptively design the transmitted waveforms based on the radar objective and the changes in the environment. In this thesis, we present the different aspects involved in the Cognitive Radar concept with deeper focus on the adaptive waveform design of the system aiming to improve the tracking performance. A method of adaptive waveform design within the sensor management problem ensuring that the total transmitted power is reduced compared to the transmission of a fixed waveform is proposed and finally a promising direction towards the multi-sensor resource allocation and waveform design is presented

    Towards localisation with Doppler radar

    Full text link
    In this thesis the author introduces a novel method for Geo Localisation via Doppler Radar. The area of research is in the three dimensional space using amplitude and magnitude measurements. Geo Localisation in mobile applications is a useful technology that enables monitoring and gathering information about objects of interest

    The University Defence Research Collaboration In Signal Processing

    Get PDF
    This chapter describes the development of algorithms for automatic detection of anomalies from multi-dimensional, undersampled and incomplete datasets. The challenge in this work is to identify and classify behaviours as normal or abnormal, safe or threatening, from an irregular and often heterogeneous sensor network. Many defence and civilian applications can be modelled as complex networks of interconnected nodes with unknown or uncertain spatio-temporal relations. The behavior of such heterogeneous networks can exhibit dynamic properties, reflecting evolution in both network structure (new nodes appearing and existing nodes disappearing), as well as inter-node relations. The UDRC work has addressed not only the detection of anomalies, but also the identification of their nature and their statistical characteristics. Normal patterns and changes in behavior have been incorporated to provide an acceptable balance between true positive rate, false positive rate, performance and computational cost. Data quality measures have been used to ensure the models of normality are not corrupted by unreliable and ambiguous data. The context for the activity of each node in complex networks offers an even more efficient anomaly detection mechanism. This has allowed the development of efficient approaches which not only detect anomalies but which also go on to classify their behaviour

    Investigation of bandwidth utilisation methods to optimise performance in passive bistatic radar

    Get PDF
    This thesis reports on research into the field of multiband Passive Bistatic Radar (PBR). The work is based on the premise that it is possible to improve on the PBR range resolution by exploiting the full broadcasted bandwidth from transmitters of opportunity. This work comprises both Frequency Modulated (FM) radio and Digital Video Broadcast - Terrestrial (DVB-T) waveforms. The work shows how the exploitation of the available frequency scattered bandwidth broadcasted from single broadcast towers can be achieved by coherently by combining each of the individual channels/bands, and that the range resolution is improved accordingly. The major contributions of this thesis may be divided into the following parts: Hardware (HW) design and development, algorithm development, simulations, real target data analysis, and finally non-cooperative target recognition and High Range Resolution (HRR) considerations. The work comprises simple PBR performance predictions for various strong transmitters of opportunity in the southeastern parts of Norway. Hardware for data recording was designed, produced and made working. The mathematics for coherently combining non-adjacent single channels/bands in the range correlation was developed. The range resolution performance of the algorithm was supported by theoretical simulations using pseudo random generated signals, as well as simulations using real recorded FM radio and DVB-T signals from nearby strong transmitters. For FM radio and DVB-T airliners and for DVB-T also a propeller aircraft were analyzed. The theoretical claims were supported by the real life target analysis, as the range resolution was improved as predicted for all targets. For the DVB-T waveform, an analysis of the HRR profiles showed that two targets of different type was manually classified as targets of different type. This work has fully closed the circle from idea, HW design, development and testing, theoretical algorithm development and simulations, and finally real world performance analysis as well as target analysis

    Proceedings of the Augmented VIsual Display (AVID) Research Workshop

    Get PDF
    The papers, abstracts, and presentations were presented at a three day workshop focused on sensor modeling and simulation, and image enhancement, processing, and fusion. The technical sessions emphasized how sensor technology can be used to create visual imagery adequate for aircraft control and operations. Participants from industry, government, and academic laboratories contributed to panels on Sensor Systems, Sensor Modeling, Sensor Fusion, Image Processing (Computer and Human Vision), and Image Evaluation and Metrics

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion

    Advanced Signal Processing For Multi-Mission Airborne Radar

    Get PDF
    With the technological advancement of the 21st century, functions of different radars are being merged. A multi-functional system brings the technology of remote sensing to a wide array of applications while at the same time reduces costs of implementation and operation. Ground-based multi-mission radars have been studied in the past. The airborne counterpart deserves a through study with additional and stringent requirements of cost, size, weight, and power.In this dissertation, multi-mission functions in an airborne radar is performed using modular, software-based architecture. The software-based solution is chosen instead of proposing new hardware, primarily because evaluation, validation, and certification of new hardware is onerous and time consuming. The system implementations are validated using simulations as well as field measurements. The simulations are carried out using Mathworks® Phased Array System Toolbox. The field measurements are performed using an enhanced commercial airborne radar system called Polarimetric Airborne Radar Operating at X-band Version 1 (PARADOX1), which is an X-band, vertically polarized, solid state, pulsed radar.The shortcomings of PARADOX1 originate from small aperture size and low power. Various signal processing algorithms are developed and applied to PARADOX1 data to enhance the data quality. Super-resolution algorithms in range, angle, and Doppler domains, for example, have proven to effectively enhance the spatial resolution. An end-to-end study of single-polarized weather measurements is performed using PARADOX1 measurements. The results are compared with well established ground-based radars. The similarities, differences as well as limitations (of such comparisons) are discussed. Sense and Avoid (SAA) tracking is considered as a core functionality and presented in the context of safe integration of Unmanned Aerial Vehicles (UAV) in national airspace. A "nearly" constant acceleration motion model is used in conjunction with Kalman Filter and Joint Probabilistic Data Association (JPDA) to perform tracking operations. The basic SAA tracking function is validated through simulations as well as field measurements.The field-validations show that a modular, software-based enhancement to an existing radar system is a viable solution in realizing multi-mission functionalities in an airborne radar. The SAA tracking is validated in ground-based tests using an x86 based PC with a generic Linux operating system. The weather measurements from PARADOX1 and the subsequent data quality enhancements show that PARADOX1 data products are comparable to those of existing ground based radars

    Radar Technology

    Get PDF
    In this book “Radar Technology”, the chapters are divided into four main topic areas: Topic area 1: “Radar Systems” consists of chapters which treat whole radar systems, environment and target functional chain. Topic area 2: “Radar Applications” shows various applications of radar systems, including meteorological radars, ground penetrating radars and glaciology. Topic area 3: “Radar Functional Chain and Signal Processing” describes several aspects of the radar signal processing. From parameter extraction, target detection over tracking and classification technologies. Topic area 4: “Radar Subsystems and Components” consists of design technology of radar subsystem components like antenna design or waveform design
    corecore