53 research outputs found

    Spatial Interaction for Immersive Mixed-Reality Visualizations

    Get PDF
    Growing amounts of data, both in personal and professional settings, have caused an increased interest in data visualization and visual analytics. Especially for inherently three-dimensional data, immersive technologies such as virtual and augmented reality and advanced, natural interaction techniques have been shown to facilitate data analysis. Furthermore, in such use cases, the physical environment often plays an important role, both by directly influencing the data and by serving as context for the analysis. Therefore, there has been a trend to bring data visualization into new, immersive environments and to make use of the physical surroundings, leading to a surge in mixed-reality visualization research. One of the resulting challenges, however, is the design of user interaction for these often complex systems. In my thesis, I address this challenge by investigating interaction for immersive mixed-reality visualizations regarding three core research questions: 1) What are promising types of immersive mixed-reality visualizations, and how can advanced interaction concepts be applied to them? 2) How does spatial interaction benefit these visualizations and how should such interactions be designed? 3) How can spatial interaction in these immersive environments be analyzed and evaluated? To address the first question, I examine how various visualizations such as 3D node-link diagrams and volume visualizations can be adapted for immersive mixed-reality settings and how they stand to benefit from advanced interaction concepts. For the second question, I study how spatial interaction in particular can help to explore data in mixed reality. There, I look into spatial device interaction in comparison to touch input, the use of additional mobile devices as input controllers, and the potential of transparent interaction panels. Finally, to address the third question, I present my research on how user interaction in immersive mixed-reality environments can be analyzed directly in the original, real-world locations, and how this can provide new insights. Overall, with my research, I contribute interaction and visualization concepts, software prototypes, and findings from several user studies on how spatial interaction techniques can support the exploration of immersive mixed-reality visualizations.Zunehmende Datenmengen, sowohl im privaten als auch im beruflichen Umfeld, führen zu einem zunehmenden Interesse an Datenvisualisierung und visueller Analyse. Insbesondere bei inhärent dreidimensionalen Daten haben sich immersive Technologien wie Virtual und Augmented Reality sowie moderne, natürliche Interaktionstechniken als hilfreich für die Datenanalyse erwiesen. Darüber hinaus spielt in solchen Anwendungsfällen die physische Umgebung oft eine wichtige Rolle, da sie sowohl die Daten direkt beeinflusst als auch als Kontext für die Analyse dient. Daher gibt es einen Trend, die Datenvisualisierung in neue, immersive Umgebungen zu bringen und die physische Umgebung zu nutzen, was zu einem Anstieg der Forschung im Bereich Mixed-Reality-Visualisierung geführt hat. Eine der daraus resultierenden Herausforderungen ist jedoch die Gestaltung der Benutzerinteraktion für diese oft komplexen Systeme. In meiner Dissertation beschäftige ich mich mit dieser Herausforderung, indem ich die Interaktion für immersive Mixed-Reality-Visualisierungen im Hinblick auf drei zentrale Forschungsfragen untersuche: 1) Was sind vielversprechende Arten von immersiven Mixed-Reality-Visualisierungen, und wie können fortschrittliche Interaktionskonzepte auf sie angewendet werden? 2) Wie profitieren diese Visualisierungen von räumlicher Interaktion und wie sollten solche Interaktionen gestaltet werden? 3) Wie kann räumliche Interaktion in diesen immersiven Umgebungen analysiert und ausgewertet werden? Um die erste Frage zu beantworten, untersuche ich, wie verschiedene Visualisierungen wie 3D-Node-Link-Diagramme oder Volumenvisualisierungen für immersive Mixed-Reality-Umgebungen angepasst werden können und wie sie von fortgeschrittenen Interaktionskonzepten profitieren. Für die zweite Frage untersuche ich, wie insbesondere die räumliche Interaktion bei der Exploration von Daten in Mixed Reality helfen kann. Dabei betrachte ich die Interaktion mit räumlichen Geräten im Vergleich zur Touch-Eingabe, die Verwendung zusätzlicher mobiler Geräte als Controller und das Potenzial transparenter Interaktionspanels. Um die dritte Frage zu beantworten, stelle ich schließlich meine Forschung darüber vor, wie Benutzerinteraktion in immersiver Mixed-Reality direkt in der realen Umgebung analysiert werden kann und wie dies neue Erkenntnisse liefern kann. Insgesamt trage ich mit meiner Forschung durch Interaktions- und Visualisierungskonzepte, Software-Prototypen und Ergebnisse aus mehreren Nutzerstudien zu der Frage bei, wie räumliche Interaktionstechniken die Erkundung von immersiven Mixed-Reality-Visualisierungen unterstützen können

    Performance Assessment of Masonry School Buildings to Seismic and Flood Hazards Using Bayesian Networks

    Get PDF
    Performance assessment of schools is an integral part of disaster risk reduction of communities from natural hazards such as earthquakes and floods. In regions of high exposure, these hazards may often act concurrently, whereby yearly flood events weaken masonry school buildings, rendering them more vulnerable to frequent earthquake shaking. This recurring damage, combined with other functional losses, ultimately result in disruption to education delivery, affecting vulnerable schoolchildren. This project examines behaviour of school buildings to seismic and flood loading, and associated disruption to education from a structural and functional perspective. The study is based on a case study of school buildings in Guwahati, India, where the majority of the buildings can be classified into confined masonry (CM) typology. This project presents three stages of analyses to study the performance of these CM school buildings and the system of schools, as summarised in the following. The first stage of the study involves refinement of the World Bank’s Global Library of School Infrastructure taxonomy to widen its scope and to fit the CM school typology. This leads to the identification of index buildings, which are single-story buildings with flexible diaphragms differing mainly in the level of seismic design. In the second stage, a novel numerical modelling platform based on Applied Element Method is used to analyse the index buildings for simplified lateral loads from both the aforementioned hazards. Seismic loading is applied in the form of ground acceleration, while flood loading is applied as hydrostatic pressure. Sequential scenarios are simulated by subjecting the building to varying flood depths followed by lateral ground acceleration, after accounting for the material degradation due to past flooding. Analytical fragility curves are derived for each case of analysis to quantify their physical performance, using a non-linear static procedure (N2 method) and least square error regression. The third stage of the study employs a Bayesian network (BN) based methodology to model the education disruption at the school system level, from exposure of schools to flood and seismic hazards. The methodology integrates the qualitative and quantitative nature of system variables, such as the physical fragility of school buildings (derived in the second stage), accessibility loss, change of use as shelters and socio-economic condition of the users-community. The performance of the education system impacted by the sequential hazards is quantified through the probability of the various states of disruption duration. The BN also explores the effectiveness of non-structural mitigating measures, such as the transfer of students between schools in the system. The framework proves to be a useful tool to assist decision-making, with regard to disaster preparedness and recovery, hence, contributing to the development of resilient education systems

    Computational Modelling of Concrete and Concrete Structures

    Get PDF
    Computational Modelling of Concrete and Concrete Structures contains the contributions to the EURO-C 2022 conference (Vienna, Austria, 23-26 May 2022). The papers review and discuss research advancements and assess the applicability and robustness of methods and models for the analysis and design of concrete, fibre-reinforced and prestressed concrete structures, as well as masonry structures. Recent developments include methods of machine learning, novel discretisation methods, probabilistic models, and consideration of a growing number of micro-structural aspects in multi-scale and multi-physics settings. In addition, trends towards the material scale with new fibres and 3D printable concretes, and life-cycle oriented models for ageing and durability of existing and new concrete infrastructure are clearly visible. Overall computational robustness of numerical predictions and mathematical rigour have further increased, accompanied by careful model validation based on respective experimental programmes. The book will serve as an important reference for both academics and professionals, stimulating new research directions in the field of computational modelling of concrete and its application to the analysis of concrete structures. EURO-C 2022 is the eighth edition of the EURO-C conference series after Innsbruck 1994, Bad Gastein 1998, St. Johann im Pongau 2003, Mayrhofen 2006, Schladming 2010, St. Anton am Arlberg 2014, and Bad Hofgastein 2018. The overarching focus of the conferences is on computational methods and numerical models for the analysis of concrete and concrete structures

    Carbon Nanomaterials for Therapy, Diagnosis, and Biosensing

    Get PDF
    In the landscape of the design of carbon nanomaterials, the fine-tuning of their functionalities and physico-chemical properties has increased their potential for therapeutic, diagnostic, and biosensing applications. In this editorial, we will provide a brief overview of the contents of this Special Issue. In particular, nanoplatforms originating from the synergistic combination of carbon-based nanomaterials (i.e., nanotubes, graphene, graphene oxide, carbon quantum dots, nanodiamond, etc.) with various functional molecules such as drugs, natural compounds, biomolecules, polymers, metal nanoparticles, and macrocycles that have useful applications in drug delivery, multi-targeted therapies, theranostic as well as scaffolds in tissue engineering, and as sensing materials have been selected for publication as Articles or Mini Reviews. The variety of applications covered by the nine articles published in this Special Issue of Nanomaterials are proof of the growing attention that the use of carbon nanomaterials in the biomedical/pharmaceutical field has received in recent years. We hope that readers find the contents of this Special Issue useful for their research, which is aimed to advance carbon nanomaterials from the laboratory to clinical nanomedicine

    Interaction Design for Mixed-Focus Collaboration in Cross-Device Environments

    Get PDF
    The proliferation of interactive technologies has resulted in a multitude of form factors for computer devices, such as tablets and phones, and large tabletop and wall displays. Investigating how these devices may be used together as Cross-Device Environments (XDEs) to facilitate collaboration is an active area of research in Human Computer Interaction (HCI) and Computer-Supported Cooperative Work (CSCW). The research community has explored the role of personal and shared devices in supporting group work and has introduced a number of cross-device interaction techniques to enable interaction among devices in an XDE. However, there is little understanding of how the interface design of those techniques may change the way people conduct collaboration, which, in turn, could influence the outcome of the activity. This thesis studies the impact of cross-device interaction techniques on collaborative processes. In particular, I investigated how interface design of cross-device interaction techniques may impact communication and coordination during group work. First, I studied the impact of two specific cross-device interaction techniques on collaboration in an XDE comprised of tablets and a tabletop. The findings confirmed that the choice of interaction techniques mattered when it came to facilitating both independent and joint work periods during group work. The study contributes knowledge towards problematizing the impact of cross-device interaction techniques on collaboration in HCI research. This early work gave rise to deeper questions regarding coordination in cross-device transfer and leveraging that to support the flexibility of work periods in collaborative activities. Consequently, I explored a range of interface design choices that varied the degree of synchronicity in coordinating data transfer across two devices. Additionally, I studied the impact of those interface designs on collaborative processes. My findings resulted in design considerations as well as adapting a synchronicity framework to articulate the impact of cross-device transfer techniques on collaboration. While performing the two research projects, I identified a need for a tool to articulate the impact of specific user interface elements on collaboration. Through a series of case studies, I developed a visual framework that researchers can use as a formative and summative method to understand if a given interaction technique hinders or supports collaboration in the specific task context. I discuss the contributions of my work to the field of HCI, design implications beyond the environments studied, and future research directions to build on and extend my findings

    Merging the Real and the Virtual: An Exploration of Interaction Methods to Blend Realities

    Get PDF
    We investigate, build, and design interaction methods to merge the real with the virtual. An initial investigation looks at spatial augmented reality (SAR) and its effects on pointing with a real mobile phone. A study reveals a set of trade-offs between the raycast, viewport, and direct pointing techniques. To further investigate the manipulation of virtual content within a SAR environment, we design an interaction technique that utilizes the distance that a user holds mobile phone away from their body. Our technique enables pushing virtual content from a mobile phone to an external SAR environment, interact with that content, rotate-scale-translate it, and pull the content back into the mobile phone. This is all done in a way that ensures seamless transitions between the real environment of the mobile phone and the virtual SAR environment. To investigate the issues that occur when the physical environment is hidden by a fully immersive virtual reality (VR) HMD, we design and investigate a system that merges a realtime 3D reconstruction of the real world with a virtual environment. This allows users to freely move, manipulate, observe, and communicate with people and objects situated in their physical reality without losing their sense of immersion or presence inside a virtual world. A study with VR users demonstrates the affordances provided by the system and how it can be used to enhance current VR experiences. We then move to AR, to investigate the limitations of optical see-through HMDs and the problem of communicating the internal state of the virtual world with unaugmented users. To address these issues and enable new ways to visualize, manipulate, and share virtual content, we propose a system that combines a wearable SAR projector. Demonstrations showcase ways to utilize the projected and head-mounted displays together, such as expanding field of view, distributing content across depth surfaces, and enabling bystander collaboration. We then turn to videogames to investigate how spectatorship of these virtual environments can be enhanced through expanded video rendering techniques. We extract and combine additional data to form a cumulative 3D representation of the live game environment for spectators, which enables each spectator to individually control a personal view into the stream while in VR. A study shows that users prefer spectating in VR when compared with a comparable desktop rendering

    Low Back Pain (LBP)

    Get PDF
    Low back pain (LBP) is a major public health problem, being the most commonly reported musculoskeletal disorder (MSD) and the leading cause of compromised quality of life and work absenteeism. Indeed, LBP is the leading worldwide cause of years lost to disability, and its burden is growing alongside the increasing and aging population. The etiology, pathogenesis, and occupational risk factors of LBP are still not fully understood. It is crucial to give a stronger focus to reducing the consequences of LBP, as well as preventing its onset. Primary prevention at the occupational level remains important for highly exposed groups. Therefore, it is essential to identify which treatment options and workplace-based intervention strategies are effective in increasing participation at work and encouraging early return-to-work to reduce the consequences of LBP. The present Special Issue offers a unique opportunity to update many of the recent advances and perspectives of this health problem. A number of topics will be covered in order to attract high-quality research papers, including the following major areas: prevalence and epidemiological data, etiology, prevention, assessment and treatment approaches, and health promotion strategies for LBP. We have received a wide range of submissions, including research on the physical, psychosocial, environmental, and occupational perspectives, also focused on workplace interventions

    Contributions à l'étude des patrons spatiaux de biodiversité dans les paysages complexes

    Full text link
    Les patrons spatiaux issus de processus écologiques naturels et anthropiques constituent une mosaïque complexe dans la nature. Ceci combiné aux conséquences parfois colossales des perturbations anthropiques sur la biodiversité et les services écosystémiques, fait de l'écologie spatiale une science à la fois complexe et urgente dans un contexte de changement global rapide. Dans cette thèse, j’ai essayé de contribuer à notre compréhension de comment la structure spatiale des paysages influence la dynamique des populations, en utilisant des approches innovantes. Dans ce but, j'ai étudié différentes perturbations et différents aspects de la dynamique des populations dans trois chapitres. Les deux premiers chapitres d’analyse portent sur un biome qui fournit de nombreux services écosystémiques. La forêt boréale présente une exploitation en plein développement potentiellement non durable, et est aussi actuellement menacée par des perturbations naturelles sans précédents et exacerbées. J'ai d'abord examiné comment l’habitat naturel et les nombreuses altérations du paysage causées par l'homme influencent une communauté de mammifères de la forêt boréale. Ensuite, je me suis concentré sur une autre perturbation à grande échelle de la forêt boréale en identifiant les éléments du paysage qui limitent la propagation d’un des ravageurs forestiers les plus destructeurs au monde. Enfin, j'ai complété les approches utilisées dans les deux chapitres précédents, en me concentrant sur l'aspect temporel du changement de la dynamique des populations. Je l'ai fait en construisant et en évaluant une méthode capable de détecter des changements de diversité génétique locaux et atypiques, malgré les changements aléatoires omniprésents apportés par la dérive génétique et le flux de gènes. Mes trois chapitres d’analyse ont des implications claires en matière de conservation. Bien que deux d'entre eux soient concentrés sur des systèmes spécifiques, ils peuvent s'appliquer à d'autres paysages, ou du moins fournir une piste pour de futures recherches. Pour conclure ma thèse, j'ai suivi la synthèse de mes chapitres par une discussion sur comment l'interdisciplinarité des disciplines associées à l'écologie spatiale est une force essentielle que nous devrions cultiver. Je termine ma thèse en identifiant certaines des directions de recherche futures les plus excitantes et prometteuses.Natural and anthropogenic spatial patterns create an intricate mosaic. This fact, combined with the sometimes colossal consequences of anthropogenic disturbances on biodiversity and ecosystem services, makes spatial ecology a science of both complexity and urgency in a context of rapid global change. In this thesis, I have tried to contribute to our understanding of how the spatial structure of landscapes influences population dynamics through innovative approaches. Towards this goal, I have investigated different perturbations and different aspects of population dynamics in three chapters. The first two analysis chapters focus on a biome which is a large provider of ecosystem services and resources, featuring rapidly increasing and possibly unsustainable exploitation, but which is also currently under threat from unprecedented and exacerbated natural disturbances. First, I delved into how a community of boreal forest mammals is driven by its natural habitat and the many man-made alterations to the landscape. Then, I focused on another large-scale perturbation of the boreal forest by identifying what elements of the landscape constrain the spread of one of the most destructive forest pests in the world. Finally, I complemented the approaches used the previous two chapters, by focusing on the temporal aspect of population dynamics change. I did this by constructing and evaluating of a method capable of detecting local atypical change in genetic diversity despite the ever-present random changes brought by genetic drift and gene flow. My three analysis chapters have clear conservation implications which, although two of them focused on specific systems, may translate to other landscapes, or at least provide a pipeline for future research. To conclude my thesis, I followed the synthesis of my chapters by a discussion about how the interdisciplinarity of disciplines associated with spatial ecology is an essential strength we should cultivate. I end my thesis by identifying some of the most exciting and promising future research directions

    Designing for Cross-Device Interactions

    Get PDF
    Driven by technological advancements, we now own and operate an ever-growing number of digital devices, leading to an increased amount of digital data we produce, use, and maintain. However, while there is a substantial increase in computing power and availability of devices and data, many tasks we conduct with our devices are not well connected across multiple devices. We conduct our tasks sequentially instead of in parallel, while collaborative work across multiple devices is cumbersome to set up or simply not possible. To address these limitations, this thesis is concerned with cross-device computing. In particular it aims to conceptualise, prototype, and study interactions in cross-device computing. This thesis contributes to the field of Human-Computer Interaction (HCI)—and more specifically to the area of cross-device computing—in three ways: first, this work conceptualises previous work through a taxonomy of cross-device computing resulting in an in-depth understanding of the field, that identifies underexplored research areas, enabling the transfer of key insights into the design of interaction techniques. Second, three case studies were conducted that show how cross-device interactions can support curation work as well as augment users’ existing devices for individual and collaborative work. These case studies incorporate novel interaction techniques for supporting cross-device work. Third, through studying cross-device interactions and group collaboration, this thesis provides insights into how researchers can understand and evaluate multi- and cross-device interactions for individual and collaborative work. We provide a visualization and querying tool that facilitates interaction analysis of spatial measures and video recordings to facilitate such evaluations of cross-device work. Overall, the work in this thesis advances the field of cross-device computing with its taxonomy guiding research directions, novel interaction techniques and case studies demonstrating cross-device interactions for curation, and insights into and tools for effective evaluation of cross-device systems

    Exploring perceptions of household surface cleaning products and the implications for sustainable consumption

    Get PDF
    Historically, green cleaning products have performed poorly in comparison with conventional alternatives. Other green product categories are rising in popularity while green cleaning products remain unfavourable. Consumers may view green cleaning products negatively because they believe that green products cannot be as strong as conventional products. This has only been tested in hypothetical products. Consumers also view green cleaning products as safer than conventional cleaning products. This thesis explores these perceptions by answering the following research questions: 1. Are there differences in the composition of green and conventional cleaning products? If so, do these differences have implications for health and the environment? 2. Does a product’s environmental status influence how the product is perceived by consumers in terms of its effectiveness? 3. Does a product’s environmental status influence how the product is perceived by consumers in terms of its safety? 4. Does a product’s environmental status influence the way in which its ingredients are perceived by consumers? Firstly, a comparison of ingredients was made using publicly available information. Secondly, a novel experimental study was used to compare perceptions of product efficacy. Finally, an online survey was utilised to explore perceptions of product and ingredient safety. There are no differences between green and conventional cleaning products in their potential harm to human health. Negative quality perceptions of green household cleaning products are not present for existing green cleaning products. Consumers struggle to identify green cleaning products, but those who correctly identify green cleaning products perceive them as safer for health than conventional products. There were no perceived differences in ingredient safety between green and conventional products. This research contributes an original methodology by exploring perceptions in real over hypothetical products, and outlines principles that future research must follow
    • …
    corecore