103 research outputs found

    A comparative linear mean-square stability analysis of Maruyama- and Milstein-type methods

    Full text link
    In this article we compare the mean-square stability properties of the Theta-Maruyama and Theta-Milstein method that are used to solve stochastic differential equations. For the linear stability analysis, we propose an extension of the standard geometric Brownian motion as a test equation and consider a scalar linear test equation with several multiplicative noise terms. This test equation allows to begin investigating the influence of multi-dimensional noise on the stability behaviour of the methods while the analysis is still tractable. Our findings include: (i) the stability condition for the Theta-Milstein method and thus, for some choices of Theta, the conditions on the step-size, are much more restrictive than those for the Theta-Maruyama method; (ii) the precise stability region of the Theta-Milstein method explicitly depends on the noise terms. Further, we investigate the effect of introducing partially implicitness in the diffusion approximation terms of Milstein-type methods, thus obtaining the possibility to control the stability properties of these methods with a further method parameter Sigma. Numerical examples illustrate the results and provide a comparison of the stability behaviour of the different methods.Comment: 19 pages, 10 figure

    Mean-square stability analysis of approximations of stochastic differential equations in infinite dimensions

    Full text link
    The (asymptotic) behaviour of the second moment of solutions to stochastic differential equations is treated in mean-square stability analysis. This property is discussed for approximations of infinite-dimensional stochastic differential equations and necessary and sufficient conditions ensuring mean-square stability are given. They are applied to typical discretization schemes such as combinations of spectral Galerkin, finite element, Euler-Maruyama, Milstein, Crank-Nicolson, and forward and backward Euler methods. Furthermore, results on the relation to stability properties of corresponding analytical solutions are provided. Simulations of the stochastic heat equation illustrate the theory.Comment: 22 pages, 4 figures; deleted a section; shortened the presentation of results; corrected typo

    An Invitation to Stochastic Differential Equations in Healthcare

    Get PDF
    An important problem in finance is the evaluation of the value in the future of assets (e.g., shares in company, currencies, derivatives, patents). The change of the values can be modeled with differential equations. Roughly speaking, a typical differential equation in finance has two components, one deterministic (e.g., rate of interest of bank accounts) and one stochastic (e.g., values of stocks) that is often related to the notion of Brownian motions. The solution of such a differential equation needs the evaluation of Riemann–Stieltjes’s integrals for the deterministic part and Ito’s integrals for the stochastic part. For A few types of such differential equations, it is possible to determine an exact solution, e.g., a geometric Brownian motion. On the other side for almost all stochastic differential equations we can only provide approximations of a solution. We present some numerical methods for solving stochastic differential equations

    Loss of regularity for Kolmogorov equations

    Get PDF
    The celebrated H\"{o}rmander condition is a sufficient (and nearly necessary) condition for a second-order linear Kolmogorov partial differential equation (PDE) with smooth coefficients to be hypoelliptic. As a consequence, the solutions of Kolmogorov PDEs are smooth at all positive times if the coefficients of the PDE are smooth and satisfy H\"{o}rmander's condition even if the initial function is only continuous but not differentiable. First-order linear Kolmogorov PDEs with smooth coefficients do not have this smoothing effect but at least preserve regularity in the sense that solutions are smooth if their initial functions are smooth. In this article, we consider the intermediate regime of nonhypoelliptic second-order Kolmogorov PDEs with smooth coefficients. The main observation of this article is that there exist counterexamples to regularity preservation in that case. More precisely, we give an example of a second-order linear Kolmogorov PDE with globally bounded and smooth coefficients and a smooth initial function with compact support such that the unique globally bounded viscosity solution of the PDE is not even locally H\"{o}lder continuous. From the perspective of probability theory, the existence of this example PDE has the consequence that there exists a stochastic differential equation (SDE) with globally bounded and smooth coefficients and a smooth function with compact support which is mapped by the corresponding transition semigroup to a function which is not locally H\"{o}lder continuous. In other words, degenerate noise can have a roughening effect. A further implication of this loss of regularity phenomenon is that numerical approximations may converge without any arbitrarily small polynomial rate of convergence to the true solution of the SDE. More precisely, we prove for an example SDE with globally bounded and smooth coefficients that the standard Euler approximations converge to the exact solution of the SDE in the strong and numerically weak sense, but at a rate that is slower then any power law.Comment: Published in at http://dx.doi.org/10.1214/13-AOP838 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore