188 research outputs found

    Alert Correlation through a Multi Components Architecture

    Get PDF
    Alert correlation is a process that analyzes the raw alerts produced by one or more intrusion detection systems, reduces nonrelevant ones, groups together alerts based on similarity and causality relationships between them and finally makes aconcise and meaningful view of occurring or attempted intrusions. Unfortunately, most correlation approaches use just a few components that aim only specific correlation issues and so cause reduction in correlation rate. This paper uses a general correlation model that has already been presented in [9] and is consisted of a comprehensive set of components. Then some changes are applied in the component that is related to multi-step attack scenario to detect them better and so to improve semantic level of alerts. The results of experiments with DARPA 2000 data set obviously show the effectiveness of the proposed approach.DOI:http://dx.doi.org/10.11591/ijece.v3i4.277

    Intrusion Alert Correlation Technique Analysis for Heterogeneous Log

    Get PDF
    Intrusion alert correlation is multi-step processes that receives alerts from heterogeneous log resources as input and produce a high-level description of the malicious activity on the network. The objective of this study is to analyse the current alert correlation technique and identify the significant criteria in each technique that can improve the Intrusion Detection System(IDS) problem such as prone to alert flooding, contextual problem, false alert and scalability. The existing alert correlation techniques had been reviewed and analysed. From the analysis, six capability criteria have been identified to improve the current alert correlation technique. They are capability to do alert reduction, alert clustering,identify multistep attack, reduce false alert, detect known attack and detect unknown attack

    Alert Correlation Technique Analysis For Diverse Log

    Get PDF
    Alert correlation is a process that analyses the alerts produced by one or more diverse devices and provides a more succinct and high-level view of occurring or attempted intrusions. The objective of this study is to analyse the current alert correlation technique and identify the significant criteria in each technique that can improve the Intrusion Detection System IDS) problem such as prone to alert flooding, contextual problem, false alert and scalability. The existing alert correlation techniques had been reviewed and analysed. From the analysis, six capability criteria have been identified to improve the current alert correlation techniques which are capability to do alert reduction, alert clustering, identify multi-step attack,reduce false alert, detect known attack and detect unknown attack and technique’s combination is proposed

    Characterization of cyber attacks through variable length Markov models

    Get PDF
    The increase in bandwidth, the emergence of wireless technologies, and the spread of the Internet throughout the world have created new forms of communication with effects on areas such as business, entertainment, and education. This pervasion of computer networks into human activity has amplified the importance of cyber security. Network security relies heavily on Intrusion Detection Systems (IDS), whose objective is to detect malicious network traffic and computer usage. IDS data can be correlated into cyber attack tracks, which consist of ordered collections of alerts triggered during a single multi-stage attack. The objective of this research is to enhance the current knowledge of attack behavior by developing a model that captures the sequential properties of attack tracks. Two sequence characterization models are discussed: Variable Length Markov Models (VLMMs), which are a type of finite-context models, and Hidden Markov Models (HMMs), which are also known as finite-state models. A VLMM is implemented based on attack sequences s = {x1, x2, ...xn} where xi 2 and is a set of possible values of one or more fields in an alert message. This work shows how the proposed model can be used to predict future attack actions (xj+1) belonging to a newly observed and unfolding attack sequence s = {x1, x2, ..., xj}. It also presents a metric that measures the variability in attack actions based on information entropy and a method for classifying attack tracks as sophisticated or simple based on average log-loss. In addition, insights into the analysis of attack target machines are discussed

    Identifying malicious hosts involved in periodic communications

    Get PDF
    After many research efforts, Network Intrusion Detection Systems still have much room for improvement. This paper proposes a novel method for automatic and timely analysis of traffic generated by large networks, which is able to identify malicious external hosts even if their activities do not raise any alert by existing defensive systems. Our proposal focuses on periodic communications, since our experimental evaluation shows that they are more related to malicious activities, and it can be easily integrated with other detection systems. We highlight that periodic network activities can occur at very different intervals ranging from seconds to hours, hence a timely analysis of long time-windows of the traffic generated by large organizations is a challenging task in itself. Existing work is primarily focused on identifying botnets, whereas the method proposed in this paper has a broader target and aims to detect external hosts that are likely involved in any malicious operation. Since malware-related network activities can be considered as rare events in the overall traffic, the output of the proposed method is a manageable graylist of external hosts that are characterized by a considerably higher likelihood of being malicious compared to the entire set of external hosts contacted by the monitored large network. A thorough evaluation on a real large network traffic demonstrates the effectiveness of our proposal, which is capable of automatically selecting only dozens of suspicious hosts from hundreds of thousands, thus allowing security operators to focus their analyses on few likely malicious targets

    A Hierarchical Security Event Correlation Model for Real-Time Threat Detection and Response

    Get PDF
    An intrusion detection system (IDS) perform postcompromise detection of security breaches whenever preventive measures such as firewalls do not avert an attack. However, these systems raise a vast number of alerts that must be analyzed and triaged by security analysts. This process is largely manual, tedious, and time-consuming. Alert correlation is a technique that reduces the number of intrusion alerts by aggregating alerts that are similar in some way. However, the correlation is performed outside the IDS through third-party systems and tools, after the IDS has already generated a high volume of alerts. These third-party systems add to the complexity of security operations. In this paper, we build on the highly researched area of alert and event correlation by developing a novel hierarchical event correlation model that promises to reduce the number of alerts issued by an intrusion detection system. This is achieved by correlating the events before the IDS classifies them. The proposed model takes the best features from similarity and graph-based correlation techniques to deliver an ensemble capability not possible by either approach separately. Further, we propose a correlation process for events rather than alerts as is the case in the current art. We further develop our own correlation and clustering algorithm which is tailor-made to the correlation and clustering of network event data. The model is implemented as a proof of concept with experiments run on standard intrusion detection sets. The correlation achieves an 87% data reduction through aggregation, producing nearly 21,000 clusters in about 30 s.</jats:p
    • …
    corecore