17 research outputs found

    Revealing the canalizing structure of Boolean functions: Algorithms and applications

    Full text link
    Boolean functions can be represented in many ways including logical forms, truth tables, and polynomials. Additionally, Boolean functions have different canonical representations such as minimal disjunctive normal forms. Other canonical representation is based on the polynomial representation of Boolean functions where they can be written as a nested product of canalizing layers and a polynomial that contains the noncanalizing variables. In this paper we study the problem of identifying the canalizing layers format of Boolean functions. First, we show that the problem of finding the canalizing layers is NP-hard. Second, we present several algorithms for finding the canalizing layers of a Boolean function, discuss their complexities, and compare their performances. Third, we show applications where the computation of canalizing layers can be used for finding a disjunctive normal form of a nested canalizing function. Another application deals with the reverse engineering of Boolean networks with a prescribed layering format. Finally, implementations of our algorithms in Python and in the computer algebra system Macaulay2 are available at https://github.com/ckadelka/BooleanCanalization.Comment: 13 pages, 1 figur

    Collectively canalizing Boolean functions

    Full text link
    This paper studies the mathematical properties of collectively canalizing Boolean functions, a class of functions that has arisen from applications in systems biology. Boolean networks are an increasingly popular modeling framework for regulatory networks, and the class of functions studied here captures a key feature of biological network dynamics, namely that a subset of one or more variables, under certain conditions, can dominate the value of a Boolean function, to the exclusion of all others. These functions have rich mathematical properties to be explored. The paper shows how the number and type of such sets influence a function's behavior and define a new measure for the canalizing strength of any Boolean function. We further connect the concept of collective canalization with the well-studied concept of the average sensitivity of a Boolean function. The relationship between Boolean functions and the dynamics of the networks they form is important in a wide range of applications beyond biology, such as computer science, and has been studied with statistical and simulation-based methods. But the rich relationship between structure and dynamics remains largely unexplored, and this paper is intended as a contribution to its mathematical foundation.Comment: 15 pages, 2 figure

    Identification of control targets in Boolean molecular network models via computational algebra

    Get PDF
    Motivation: Many problems in biomedicine and other areas of the life sciences can be characterized as control problems, with the goal of finding strategies to change a disease or otherwise undesirable state of a biological system into another, more desirable, state through an intervention, such as a drug or other therapeutic treatment. The identification of such strategies is typically based on a mathematical model of the process to be altered through targeted control inputs. This paper focuses on processes at the molecular level that determine the state of an individual cell, involving signaling or gene regulation. The mathematical model type considered is that of Boolean networks. The potential control targets can be represented by a set of nodes and edges that can be manipulated to produce a desired effect on the system. Experimentally, node manipulation requires technology to completely repress or fully activate a particular gene product while edge manipulations only require a drug that inactivates the interaction between two gene products. Results: This paper presents a method for the identification of potential intervention targets in Boolean molecular network models using algebraic techniques. The approach exploits an algebraic representation of Boolean networks to encode the control candidates in the network wiring diagram as the solutions of a system of polynomials equations, and then uses computational algebra techniques to find such controllers. The control methods in this paper are validated through the identification of combinatorial interventions in the signaling pathways of previously reported control targets in two well studied systems, a p53-mdm2 network and a blood T cell lymphocyte granular leukemia survival signaling network.Comment: 12 pages, 4 figures, 2 table

    Algebraic Geometry Arising from Discrete Models of Gene Regulatory Networks

    Get PDF
    Discrete models of gene regulatory networks have gained popularity in computational systems biology over the last dozen years. However, not all discrete network models reflect the behaviors of real biological systems. In this work, we focus on two model selection methods and algebraic geometry arising from these model selection methods. The first model selection method involves biologically relevant functions. We begin by introducing k-canalizing functions, a generalization of nested canalizing functions. We extend results on nested canalizing functions and derived a unique extended monomial form of arbitrary Boolean functions. This gives us a stratification of the set of n-variable Boolean functions by canalizing depth. We obtain closed formulas for the number of n-variable Boolean functions with depth k, which simultaneously generalizes enumeration formulas for canalizing, and nested canalizing functions. We characterize the set of k-canalizing functions as an algebraic variety in F2n. 2 . Next, e propose a method for the reverse engineering of networks of k-canalizing functions using techniques from computational algebra, based on our parametrization of k-canalizing functions. We also analyze binary decision diagrams of k-canalizing functions. The second model selection method involves computing minimal polynomial models using Gröbner bases. We built up the connection between staircases and Gröbner bases. We pro-vided a necessary and sufficient condition for the ideal I(V ) to have a unique reduced Gröbner basis, using the concept of a basic staircase. We also provide a sufficient combinatorial characterization of V ⊂ Nnp that yields a unique reduced Grobner basis

    Stratification and enumeration of Boolean functions by canalizing depth

    Get PDF
    Boolean network models have gained popularity in computational systems biology over the last dozen years. Many of these networks use canalizing Boolean functions, which has led to increased interest in the study of these functions. The canalizing depth of a function describes how many canalizing variables can be recursively picked off, until a non-canalizing function remains. In this paper, we show how every Boolean function has a unique algebraic form involving extended monomial layers and a well-defined core polynomial. This generalizes recent work on the algebraic structure of nested canalizing functions, and it yields a stratification of all Boolean functions by their canalizing depth. As a result, we obtain closed formulas for the number of n-variable Boolean functions with depth k, which simultaneously generalizes enumeration formulas for canalizing, and nested canalizing functions

    Molecular Network Control Through Boolean Canalization

    Get PDF
    Boolean networks are an important class of computational models for molecular interaction networks. Boolean canalization, a type of hierarchical clustering of the inputs of a Boolean function, has been extensively studied in the context of network modeling where each layer of canalization adds a degree of stability in the dynamics of the network. Recently, dynamic network control approaches have been used for the design of new therapeutic interventions and for other applications such as stem cell reprogramming. This work studies the role of canalization in the control of Boolean molecular networks. It provides a method for identifying the potential edges to control in the wiring diagram of a network for avoiding undesirable state transitions. The method is based on identifying appropriate input-output combinations on undesirable transitions that can be modified using the edges in the wiring diagram of the network. Moreover, a method for estimating the number of changed transitions in the state space of the system as a result of an edge deletion in the wiring diagram is presented. The control methods of this paper were applied to a mutated cell-cycle model and to a p53-mdm2 model to identify potential control targets
    corecore