331 research outputs found

    Investigation on electricity market designs enabling demand response and wind generation

    Get PDF
    Demand Response (DR) comprises some reactions taken by the end-use customers to decrease or shift the electricity consumption in response to a change in the price of electricity or a specified incentive payment over time. Wind energy is one of the renewable energies which has been increasingly used throughout the world. The intermittency and volatility of renewable energies, wind energy in particular, pose several challenges to Independent System Operators (ISOs), paving the way to an increasing interest on Demand Response Programs (DRPs) to cope with those challenges. Hence, this thesis addresses various electricity market designs enabling DR and Renewable Energy Systems (RESs) simultaneously. Various types of DRPs are developed in this thesis in a market environment, including Incentive-Based DR Programs (IBDRPs), Time-Based Rate DR Programs (TBRDRPs) and combinational DR programs on wind power integration. The uncertainties of wind power generation are considered through a two-stage Stochastic Programming (SP) model. DRPs are prioritized according to the ISO’s economic, technical, and environmental needs by means of the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method. The impacts of DRPs on price elasticity and customer benefit function are addressed, including the sensitivities of both DR parameters and wind power scenarios. Finally, a two-stage stochastic model is applied to solve the problem in a mixed-integer linear programming (MILP) approach. The proposed model is applied to a modified IEEE test system to demonstrate the effect of DR in the reduction of operation cost.A Resposta Dinâmica dos Consumidores (DR) compreende algumas reações tomadas por estes para reduzir ou adiar o consumo de eletricidade, em resposta a uma mudança no preço da eletricidade, ou a um pagamento/incentivo específico. A energia eólica é uma das energias renováveis que tem sido cada vez mais utilizada em todo o mundo. A intermitência e a volatilidade das energias renováveis, em particular da energia eólica, acarretam vários desafios para os Operadores de Sistema (ISOs), abrindo caminho para um interesse crescente nos Programas de Resposta Dinâmica dos Consumidores (DRPs) para lidar com esses desafios. Assim, esta tese aborda os mercados de eletricidade com DR e sistemas de energia renovável (RES) simultaneamente. Vários tipos de DRPs são desenvolvidos nesta tese em ambiente de mercado, incluindo Programas de DR baseados em incentivos (IBDRPs), taxas baseadas no tempo (TBRDRPs) e programas combinados (TBRDRPs) na integração de energia eólica. As incertezas associadas à geração eólica são consideradas através de um modelo de programação estocástica (SP) de dois estágios. Os DRPs são priorizados de acordo com as necessidades económicas, técnicas e ambientais do ISO por meio da técnica para ordem de preferência por similaridade com a solução ideal (TOPSIS). Os impactes dos DRPs na elasticidade do preço e na função de benefício ao cliente são abordados, incluindo as sensibilidades dos parâmetros de DR e dos cenários de potência eólica. Finalmente, um modelo estocástico de dois estágios é aplicado para resolver o problema numa abordagem de programação linear inteira mista (MILP). O modelo proposto é testado num sistema IEEE modificado para demonstrar o efeito da DR na redução do custo de operação

    Bidding Strategy for Networked Microgrids in the Day-Ahead Electricity Market

    Get PDF
    In recent years, microgrids have drawn increasing attention from both academic and industrial sectors due to their enormous potential benefits to the power systems. Microgrids are essentially highly-customized small-scale power systems. Microgrids’ islanding capability enables microgrids to conduct more flexible and energy-efficient operations. Microgrids have proved to be able to provide reliable and environmental-friendly electricity to quality-sensitive or off-grid consumers. In addition, during the grid-connected operation mode, microgrids can also provide support to the utility grid. World-widely continuous microgrid deployments indicate a paradigm shift from traditional centralized large-scale systems toward more distributed and customized small-scale systems. However, microgrids can cause as many problems as it solves. More efforts are needed to address these problems caused by microgrids integration. Considering there will be multiple microgrids in future power systems, the coordination problems between individual microgrids remain to be solved. Aiming at facilitating the promotion of microgrids, this thesis investigates the system-level modeling methods for coordination between multiple microgrids in the context of participating in the market. Firstly, this thesis reviews the background and recent development of microgrid coordination models. Problems of existing studies are identified. Motivated by these problems, the research objectives and structure of this thesis are presented. Secondly, this thesis examines and compares the most common frameworks for optimization under uncertainty. An improved unit commitment model considering uncertain sub-hour wind power ramp behaviors is presented to illustrate the reformulation and solution method of optimization models with uncertainty. Next, the price-maker bidding strategy for collaborative networked microgrids is presented. Multiple microgrids are coordinated as a single dispatchable entity and participate in the market as a price-maker. The market-clearing process is modeled using system residual supply/demand price-quota curves. Multiple uncertainty sources in the bidding model are mitigated with a hybrid stochastic-robust optimization framework. What’s more, this thesis further considers the privacy concerns of individual microgrids in the coordination process. Therefore a privacy-preserving solution method based on Dantzig-Wolfe decomposition is proposed to solve the bidding problem. Both computational and economic performances of the proposed model are compared with the performances of conventional centralized coordination framework. Lastly, this thesis provides suggestions on future research directions of coordination problems among multiple microgrids

    Decision-making under uncertainty in short-term electricity markets

    Get PDF
    In the course of the energy transition, the share of electricity generation from renewable energy sources in Germany has increased significantly in recent years and will continue to rise. Particularly fluctuating renewables like wind and solar bring more uncertainty and volatility to the electricity system. As markets determine the unit commitment in systems with self-dispatch, many changes have been made to the design of electricity markets to meet the new challenges. Thereby, a trend towards real-time can be observed. Short-term electricity markets are becoming more important and are seen as suitable for efficient resource allocation. Therefore, it is inevitable for market participants to develop strategies for trading electricity and flexibility in these segments. The research conducted in this thesis aims to enable better decisions in short-term electricity markets. To achieve this, a multitude of quantitative methods is developed and applied: (a) forecasting methods based on econometrics and machine learning, (b) methods for stochastic modeling of time series, (c) scenario generation and reduction methods, as well as (d) stochastic programming methods. Most significantly, two- and three-stage stochastic optimization problems are formulated to derive optimal trading decisions and unit commitment in the context of short-term electricity markets. The problem formulations adequately account for the sequential structure, the characteristics and the technical requirements of the different market segments, as well as the available information regarding uncertain generation volumes and prices. The thesis contains three case studies focusing on the German electricity markets. Results confirm that, based on appropriate representations of the uncertainty of market prices and renewable generation, the optimization approaches allow to derive sound trading strategies across multiple revenue streams, with which market participants can effectively balance the inevitable trade-off between expected profit and associated risk. By considering coherent risk metrics and flexibly adaptable risk attitudes, the trading strategies allow to substantially reduce risk with only moderate expected profit losses. These results are significant, as improving trading decisions that determine the allocation of resources in the electricity system plays a key role in coping with the uncertainty from renewables and hence contributes to the ultimate success of the energy transition
    corecore