4 research outputs found

    Exponential Stability Analysis of Mixed Delayed Quaternion-Valued Neural Networks Via Decomposed Approach

    Full text link
    © 2013 IEEE. With the application of quaternion in technology, quaternion-valued neural networks (QVNNs) have attracted many scholars' attention in recent years. For the existing results, dynamical behavior is an important studying side. In this paper, we mainly research the existence, uniqueness and exponential stability criteria of solutions for the QVNNs with discrete time-varying delays and distributed delays by means of generalized 2-norm. In order to avoid the noncommutativity of quaternion multiplication, the QVDNN system is firstly decomposed into four real-number systems by Hamilton rules. Then, we obtain the sufficient criteria for the existence, uniqueness and exponential stability of solutions by special Lyapunov-type functional, Cauchy convergence principle and monotone function. Furthermore, several corollaries are derived from the main results. Finally, we give one numerical example and its simulated figures to illustrate the effectiveness of the obtained conclusion

    Existence and exponential stability of solutions for quaternion-valued delayed hopfield neural networks by ξ-Norms

    Full text link
    © 2013 IEEE. Recently, with the development of quaternion applications, quaternion-valued neural networks (QVNNs) have been presented and studied by more and more scholars. In this paper, the existence, uniqueness and exponential stability criteria of solutions for the quaternion-valued delayed Hopfield neural networks (QVDHNNs) are mainly investigated by means of the definitions of ξ-norms. In order to construct a ξ-norm, QVDHNNs system are decomposed into four real-number systems according to Hamilton rules. Then, taking advantage of ξ-norms, inequality technique and Cauchy's test for convergence, time-invariant delays and time-varying delays are considered successively to derive ξ-exponential type sufficient conditions. Based on these, several corollaries about the existence, uniqueness and exponential stability of solutions are obtained. Finally, two numerical examples with time-invariant delays and time-varying delays are given respectively. Their simulated images illustrate the effectiveness of the main theoretical results
    corecore