222 research outputs found

    Multispectral Image Enhancement Based on the Dark Channel Prior and Bilateral Fractional Differential Model

    Get PDF
    Compared with single-band remote sensing images, multispectral images can obtain information on the same target in different bands. By combining the characteristics of each band, we can obtain clearer enhanced images; therefore, we propose a multispectral image enhancement method based on the improved dark channel prior (IDCP) and bilateral fractional differential (BFD) model to make full use of the multiband information. First, the original multispectral image is inverted to meet the prior conditions of dark channel theory. Second, according to the characteristics of multiple bands, the dark channel algorithm is improved. The RGB channels are extended to multiple channels, and the spatial domain fractional differential mask is used to optimize the transmittance estimation to make it more consistent with the dark channel hypothesis. Then, we propose a bilateral fractional differentiation algorithm that enhances the edge details of an image through the fractional differential in the spatial domain and intensity domain. Finally, we implement the inversion operation to obtain the final enhanced image. We apply the proposed IDCP_BFD method to a multispectral dataset and conduct sufficient experiments. The experimental results show the superiority of the proposed method over relative comparison methods

    A review of image fusion algorithms based on the Super-Resolution paradigm

    Get PDF
    A critical analysis of remote sensing image fusion methods based on the super-resolution (SR) paradigm is presented in this paper. Very recent algorithms have been selected among the pioneering studies adopting a new methodology and the most promising solutions. After introducing the concept of super-resolution and modeling the approach as a constrained optimization problem, different SR solutions for spatio-temporal fusion and pan-sharpening are reviewed and critically discussed. Concerning pan-sharpening, the well-known, simple, yet effective, proportional additive wavelet in the luminance component (AWLP) is adopted as a benchmark to assess the performance of the new SR-based pan-sharpening methods. The widespread quality indexes computed at degraded resolution, with the original multispectral image used as the reference, i.e., SAM (Spectral Angle Mapper) and ERGAS (Erreur Relative Globale Adimensionnelle de Synthèse), are finally presented. Considering these results, sparse representation and Bayesian approaches seem far from being mature to be adopted in operational pan-sharpening scenarios

    Image Restoration for Remote Sensing: Overview and Toolbox

    Full text link
    Remote sensing provides valuable information about objects or areas from a distance in either active (e.g., RADAR and LiDAR) or passive (e.g., multispectral and hyperspectral) modes. The quality of data acquired by remotely sensed imaging sensors (both active and passive) is often degraded by a variety of noise types and artifacts. Image restoration, which is a vibrant field of research in the remote sensing community, is the task of recovering the true unknown image from the degraded observed image. Each imaging sensor induces unique noise types and artifacts into the observed image. This fact has led to the expansion of restoration techniques in different paths according to each sensor type. This review paper brings together the advances of image restoration techniques with particular focuses on synthetic aperture radar and hyperspectral images as the most active sub-fields of image restoration in the remote sensing community. We, therefore, provide a comprehensive, discipline-specific starting point for researchers at different levels (i.e., students, researchers, and senior researchers) willing to investigate the vibrant topic of data restoration by supplying sufficient detail and references. Additionally, this review paper accompanies a toolbox to provide a platform to encourage interested students and researchers in the field to further explore the restoration techniques and fast-forward the community. The toolboxes are provided in https://github.com/ImageRestorationToolbox.Comment: This paper is under review in GRS

    CMOS Approach to Compressed-domain Image Acquisition

    Get PDF
    A hardware implementation of a real-time compressed-domain image acquisition system is demonstrated. The system performs front-end computational imaging, whereby the inner product between an image and an arbitrarily-specified mask is implemented in silicon. The acquisition system is based on an intelligent readout integrated circuit (iROIC) that is capable of providing independent bias voltages to individual detectors, which enables implementation of spatial multiplication with any prescribed mask through a bias-controlled response-modulation mechanism. The modulated pixels are summed up in the image grabber to generate the compressed samples, namely aperture-coded coefficients, of an image. A rigorous bias-selection algorithm is presented to the readout circuit, which exploits the bias-dependent nature of the imager’s responsivity. Proven functionality of the hardware in transform coding compressed image acquisition, silicon-level compressive sampling, in pixel nonuniformity correction and hardware-level implementation of region-based enhancement is demonstrated

    Improving SLI Performance in Optically Challenging Environments

    Get PDF
    The construction of 3D models of real-world scenes using non-contact methods is an important problem in computer vision. Some of the more successful methods belong to a class of techniques called structured light illumination (SLI). While SLI methods are generally very successful, there are cases where their performance is poor. Examples include scenes with a high dynamic range in albedo or scenes with strong interreflections. These scenes are referred to as optically challenging environments. The work in this dissertation is aimed at improving SLI performance in optically challenging environments. A new method of high dynamic range imaging (HDRI) based on pixel-by-pixel Kalman filtering is developed. Using objective metrics, it is show to achieve as much as a 9.4 dB improvement in signal-to-noise ratio and as much as a 29% improvement in radiometric accuracy over a classic method. Quality checks are developed to detect and quantify multipath interference and other quality defects using phase measuring profilometry (PMP). Techniques are established to improve SLI performance in the presence of strong interreflections. Approaches in compressed sensing are applied to SLI, and interreflections in a scene are modeled using SLI. Several different applications of this research are also discussed

    Hyperspectral Image Analysis of Food Quality

    Get PDF

    Sensor Signal and Information Processing II

    Get PDF
    In the current age of information explosion, newly invented technological sensors and software are now tightly integrated with our everyday lives. Many sensor processing algorithms have incorporated some forms of computational intelligence as part of their core framework in problem solving. These algorithms have the capacity to generalize and discover knowledge for themselves and learn new information whenever unseen data are captured. The primary aim of sensor processing is to develop techniques to interpret, understand, and act on information contained in the data. The interest of this book is in developing intelligent signal processing in order to pave the way for smart sensors. This involves mathematical advancement of nonlinear signal processing theory and its applications that extend far beyond traditional techniques. It bridges the boundary between theory and application, developing novel theoretically inspired methodologies targeting both longstanding and emergent signal processing applications. The topic ranges from phishing detection to integration of terrestrial laser scanning, and from fault diagnosis to bio-inspiring filtering. The book will appeal to established practitioners, along with researchers and students in the emerging field of smart sensors processing

    Advancement of bright-field hyperspectral X-ray tomographic imaging

    Get PDF
    corecore