101 research outputs found

    Interpretable Hyperspectral AI: When Non-Convex Modeling meets Hyperspectral Remote Sensing

    Full text link
    Hyperspectral imaging, also known as image spectrometry, is a landmark technique in geoscience and remote sensing (RS). In the past decade, enormous efforts have been made to process and analyze these hyperspectral (HS) products mainly by means of seasoned experts. However, with the ever-growing volume of data, the bulk of costs in manpower and material resources poses new challenges on reducing the burden of manual labor and improving efficiency. For this reason, it is, therefore, urgent to develop more intelligent and automatic approaches for various HS RS applications. Machine learning (ML) tools with convex optimization have successfully undertaken the tasks of numerous artificial intelligence (AI)-related applications. However, their ability in handling complex practical problems remains limited, particularly for HS data, due to the effects of various spectral variabilities in the process of HS imaging and the complexity and redundancy of higher dimensional HS signals. Compared to the convex models, non-convex modeling, which is capable of characterizing more complex real scenes and providing the model interpretability technically and theoretically, has been proven to be a feasible solution to reduce the gap between challenging HS vision tasks and currently advanced intelligent data processing models

    Model Inspired Autoencoder for Unsupervised Hyperspectral Image Super-Resolution

    Full text link
    This paper focuses on hyperspectral image (HSI) super-resolution that aims to fuse a low-spatial-resolution HSI and a high-spatial-resolution multispectral image to form a high-spatial-resolution HSI (HR-HSI). Existing deep learning-based approaches are mostly supervised that rely on a large number of labeled training samples, which is unrealistic. The commonly used model-based approaches are unsupervised and flexible but rely on hand-craft priors. Inspired by the specific properties of model, we make the first attempt to design a model inspired deep network for HSI super-resolution in an unsupervised manner. This approach consists of an implicit autoencoder network built on the target HR-HSI that treats each pixel as an individual sample. The nonnegative matrix factorization (NMF) of the target HR-HSI is integrated into the autoencoder network, where the two NMF parts, spectral and spatial matrices, are treated as decoder parameters and hidden outputs respectively. In the encoding stage, we present a pixel-wise fusion model to estimate hidden outputs directly, and then reformulate and unfold the model's algorithm to form the encoder network. With the specific architecture, the proposed network is similar to a manifold prior-based model, and can be trained patch by patch rather than the entire image. Moreover, we propose an additional unsupervised network to estimate the point spread function and spectral response function. Experimental results conducted on both synthetic and real datasets demonstrate the effectiveness of the proposed approach

    A Spectral Diffusion Prior for Hyperspectral Image Super-Resolution

    Full text link
    Fusion-based hyperspectral image (HSI) super-resolution aims to produce a high-spatial-resolution HSI by fusing a low-spatial-resolution HSI and a high-spatial-resolution multispectral image. Such a HSI super-resolution process can be modeled as an inverse problem, where the prior knowledge is essential for obtaining the desired solution. Motivated by the success of diffusion models, we propose a novel spectral diffusion prior for fusion-based HSI super-resolution. Specifically, we first investigate the spectrum generation problem and design a spectral diffusion model to model the spectral data distribution. Then, in the framework of maximum a posteriori, we keep the transition information between every two neighboring states during the reverse generative process, and thereby embed the knowledge of trained spectral diffusion model into the fusion problem in the form of a regularization term. At last, we treat each generation step of the final optimization problem as its subproblem, and employ the Adam to solve these subproblems in a reverse sequence. Experimental results conducted on both synthetic and real datasets demonstrate the effectiveness of the proposed approach. The code of the proposed approach will be available on https://github.com/liuofficial/SDP

    Spectral Superresolution of Multispectral Imagery with Joint Sparse and Low-Rank Learning

    Full text link
    Extensive attention has been widely paid to enhance the spatial resolution of hyperspectral (HS) images with the aid of multispectral (MS) images in remote sensing. However, the ability in the fusion of HS and MS images remains to be improved, particularly in large-scale scenes, due to the limited acquisition of HS images. Alternatively, we super-resolve MS images in the spectral domain by the means of partially overlapped HS images, yielding a novel and promising topic: spectral superresolution (SSR) of MS imagery. This is challenging and less investigated task due to its high ill-posedness in inverse imaging. To this end, we develop a simple but effective method, called joint sparse and low-rank learning (J-SLoL), to spectrally enhance MS images by jointly learning low-rank HS-MS dictionary pairs from overlapped regions. J-SLoL infers and recovers the unknown hyperspectral signals over a larger coverage by sparse coding on the learned dictionary pair. Furthermore, we validate the SSR performance on three HS-MS datasets (two for classification and one for unmixing) in terms of reconstruction, classification, and unmixing by comparing with several existing state-of-the-art baselines, showing the effectiveness and superiority of the proposed J-SLoL algorithm. Furthermore, the codes and datasets will be available at: https://github.com/danfenghong/IEEE\_TGRS\_J-SLoL, contributing to the RS community

    Coupled Convolutional Neural Network with Adaptive Response Function Learning for Unsupervised Hyperspectral Super-Resolution

    Full text link
    Due to the limitations of hyperspectral imaging systems, hyperspectral imagery (HSI) often suffers from poor spatial resolution, thus hampering many applications of the imagery. Hyperspectral super-resolution refers to fusing HSI and MSI to generate an image with both high spatial and high spectral resolutions. Recently, several new methods have been proposed to solve this fusion problem, and most of these methods assume that the prior information of the Point Spread Function (PSF) and Spectral Response Function (SRF) are known. However, in practice, this information is often limited or unavailable. In this work, an unsupervised deep learning-based fusion method - HyCoNet - that can solve the problems in HSI-MSI fusion without the prior PSF and SRF information is proposed. HyCoNet consists of three coupled autoencoder nets in which the HSI and MSI are unmixed into endmembers and abundances based on the linear unmixing model. Two special convolutional layers are designed to act as a bridge that coordinates with the three autoencoder nets, and the PSF and SRF parameters are learned adaptively in the two convolution layers during the training process. Furthermore, driven by the joint loss function, the proposed method is straightforward and easily implemented in an end-to-end training manner. The experiments performed in the study demonstrate that the proposed method performs well and produces robust results for different datasets and arbitrary PSFs and SRFs

    Hyperspectral Image Analysis through Unsupervised Deep Learning

    Get PDF
    Hyperspectral image (HSI) analysis has become an active research area in computer vision field with a wide range of applications. However, in order to yield better recognition and analysis results, we need to address two challenging issues of HSI, i.e., the existence of mixed pixels and its significantly low spatial resolution (LR). In this dissertation, spectral unmixing (SU) and hyperspectral image super-resolution (HSI-SR) approaches are developed to address these two issues with advanced deep learning models in an unsupervised fashion. A specific application, anomaly detection, is also studied, to show the importance of SU.Although deep learning has achieved the state-of-the-art performance on supervised problems, its practice on unsupervised problems has not been fully developed. To address the problem of SU, an untied denoising autoencoder is proposed to decompose the HSI into endmembers and abundances with non-negative and abundance sum-to-one constraints. The denoising capacity is incorporated into the network with a sparsity constraint to boost the performance of endmember extraction and abundance estimation.Moreover, the first attempt is made to solve the problem of HSI-SR using an unsupervised encoder-decoder architecture by fusing the LR HSI with the high-resolution multispectral image (MSI). The architecture is composed of two encoder-decoder networks, coupled through a shared decoder, to preserve the rich spectral information from the HSI network. It encourages the representations from both modalities to follow a sparse Dirichlet distribution which naturally incorporates the two physical constraints of HSI and MSI. And the angular difference between representations are minimized to reduce the spectral distortion.Finally, a novel detection algorithm is proposed through spectral unmixing and dictionary based low-rank decomposition, where the dictionary is constructed with mean-shift clustering and the coefficients of the dictionary is encouraged to be low-rank. Experimental evaluations show significant improvement on the performance of anomaly detection conducted on the abundances (through SU).The effectiveness of the proposed approaches has been evaluated thoroughly by extensive experiments, to achieve the state-of-the-art results

    Tensor singular spectral analysis for 3D feature extraction in hyperspectral images.

    Get PDF
    Due to the cubic structure of a hyperspectral image (HSI), how to characterize its spectral and spatial properties in three dimensions is challenging. Conventional spectral-spatial methods usually extract spectral and spatial information separately, ignoring their intrinsic correlations. Recently, some 3D feature extraction methods are developed for the extraction of spectral and spatial features simultaneously, although they rely on local spatial-spectral regions and thus ignore the global spectral similarity and spatial consistency. Meanwhile, some of these methods contain huge model parameters which require a large number of training samples. In this paper, a novel Tensor Singular Spectral Analysis (TensorSSA) method is proposed to extract global and low-rank features of HSI. In TensorSSA, an adaptive embedding operation is first proposed to construct a trajectory tensor corresponding to the entire HSI, which takes full advantage of the spatial similarity and improves the adequate representation of the global low-rank properties of the HSI. Moreover, the obtained trajectory tensor, which contains the global and local spatial and spectral information of the HSI, is decomposed by the Tensor singular value decomposition (t-SVD) to explore its low-rank intrinsic features. Finally, the efficacy of the extracted features is evaluated using the accuracy of image classification with a support vector machine (SVM) classifier. Experimental results on three publicly available datasets have fully demonstrated the superiority of the proposed TensorSSA over a few state-of-the-art 2D/3D feature extraction and deep learning algorithms, even with a limited number of training samples
    • …
    corecore