757 research outputs found

    Multispectral Palmprint Encoding and Recognition

    Full text link
    Palmprints are emerging as a new entity in multi-modal biometrics for human identification and verification. Multispectral palmprint images captured in the visible and infrared spectrum not only contain the wrinkles and ridge structure of a palm, but also the underlying pattern of veins; making them a highly discriminating biometric identifier. In this paper, we propose a feature encoding scheme for robust and highly accurate representation and matching of multispectral palmprints. To facilitate compact storage of the feature, we design a binary hash table structure that allows for efficient matching in large databases. Comprehensive experiments for both identification and verification scenarios are performed on two public datasets -- one captured with a contact-based sensor (PolyU dataset), and the other with a contact-free sensor (CASIA dataset). Recognition results in various experimental setups show that the proposed method consistently outperforms existing state-of-the-art methods. Error rates achieved by our method (0.003% on PolyU and 0.2% on CASIA) are the lowest reported in literature on both dataset and clearly indicate the viability of palmprint as a reliable and promising biometric. All source codes are publicly available.Comment: Preliminary version of this manuscript was published in ICCV 2011. Z. Khan A. Mian and Y. Hu, "Contour Code: Robust and Efficient Multispectral Palmprint Encoding for Human Recognition", International Conference on Computer Vision, 2011. MATLAB Code available: https://sites.google.com/site/zohaibnet/Home/code

    An Extensive Review on Spectral Imaging in Biometric Systems: Challenges and Advancements

    Full text link
    Spectral imaging has recently gained traction for face recognition in biometric systems. We investigate the merits of spectral imaging for face recognition and the current challenges that hamper the widespread deployment of spectral sensors for face recognition. The reliability of conventional face recognition systems operating in the visible range is compromised by illumination changes, pose variations and spoof attacks. Recent works have reaped the benefits of spectral imaging to counter these limitations in surveillance activities (defence, airport security checks, etc.). However, the implementation of this technology for biometrics, is still in its infancy due to multiple reasons. We present an overview of the existing work in the domain of spectral imaging for face recognition, different types of modalities and their assessment, availability of public databases for sake of reproducible research as well as evaluation of algorithms, and recent advancements in the field, such as, the use of deep learning-based methods for recognizing faces from spectral images

    Mapping Chestnut Stands Using Bi-Temporal VHR Data

    Get PDF
    This study analyzes the potential of very high resolution (VHR) remote sensing images and extended morphological profiles for mapping Chestnut stands on Tenerife Island (Canary Islands, Spain). Regarding their relevance for ecosystem services in the region (cultural and provisioning services) the public sector demand up-to-date information on chestnut and a simple straight-forward approach is presented in this study. We used two VHR WorldView images (March and May 2015) to cover different phenological phases. Moreover, we included spatial information in the classification process by extended morphological profiles (EMPs). Random forest is used for the classification process and we analyzed the impact of the bi-temporal information as well as of the spatial information on the classification accuracies. The detailed accuracy assessment clearly reveals the benefit of bi-temporal VHR WorldView images and spatial information, derived by EMPs, in terms of the mapping accuracy. The bi-temporal classification outperforms or at least performs equally well when compared to the classification accuracies achieved by the mono-temporal data. The inclusion of spatial information by EMPs further increases the classification accuracy by 5% and reduces the quantity and allocation disagreements on the final map. Overall the new proposed classification strategy proves useful for mapping chestnut stands in a heterogeneous and complex landscape, such as the municipality of La Orotava, Tenerife

    Sensing and Automation Technologies for Ornamental Nursery Crop Production: Current Status and Future Prospects

    Get PDF
    The ornamental crop industry is an important contributor to the economy in the United States. The industry has been facing challenges due to continuously increasing labor and agricultural input costs. Sensing and automation technologies have been introduced to reduce labor requirements and to ensure efficient management operations. This article reviews current sensing and automation technologies used for ornamental nursery crop production and highlights prospective technologies that can be applied for future applications. Applications of sensors, computer vision, artificial intelligence (AI), machine learning (ML), Internet-of-Things (IoT), and robotic technologies are reviewed. Some advanced technologies, including 3D cameras, enhanced deep learning models, edge computing, radio-frequency identification (RFID), and integrated robotics used for other cropping systems, are also discussed as potential prospects. This review concludes that advanced sensing, AI and robotic technologies are critically needed for the nursery crop industry. Adapting these current and future innovative technologies will benefit growers working towards sustainable ornamental nursery crop production

    Multispectral iris recognition analysis: Techniques and evaluation

    Get PDF
    This thesis explores the benefits of using multispectral iris information acquired using a narrow-band multispectral imaging system. Commercial iris recognition systems typically sense the iridal reflection pertaining to the near-infrared (IR) range of the electromagnetic spectrum. While near-infrared imaging does give a very reasonable image of the iris texture, it only exploits a narrow band of spectral information. By incorporating other wavelength ranges (infrared, red, green, blue) in iris recognition systems, the reflectance and absorbance properties of the iris tissue can be exploited to enhance recognition performance. Furthermore, the impact of eye color on iris matching performance can be determined. In this work, a multispectral iris image acquisition system was assembled in order to procure data from human subjects. Multispectral images pertaining to 70 different eyes (35 subjects) were acquired using this setup. Three different iris localization algorithms were developed in order to isolate the iris information from the acquired images. While the first technique relied on the evidence presented by a single spectral channel (viz., near-infrared), the other two techniques exploited the information represented in multiple channels. Experimental results confirm the benefits of utilizing multiple channel information for iris segmentation. Next, an image enhancement technique using the CIE L*a*b* histogram equalization method was designed to improve the quality of the multispectral images. Further, a novel encoding method based on normalized pixel intensities was developed to represent the segmented iris images. The proposed encoding algorithm, when used in conjunction with the traditional texture-based scheme, was observed to result in very good matching performance. The work also explored the matching interoperability of iris images across multiple channels. This thesis clearly asserts the benefits of multispectral iris processing, and provides a foundation for further research in this topic

    Classification of peacock feather reflectance using principal component analysis similarity factors from multispectral imaging data

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Iridescent structural colors in biology exhibit sophisticated spatially-varying reflectance properties that depend on both the illumination and viewing angles. The classification of such spectral and spatial information in iridescent structurally colored surfaces is important to elucidate the functional role of irregularity and to improve understanding of color pattern formation at different length scales. In this study, we propose a non-invasive method for the spectral classification of spatial reflectance patterns at the micron scale based on the multispectral imaging technique and the principal component analysis similarity factor (PCASF). We demonstrate the effectiveness of this approach and its component methods by detailing its use in the study of the angle-dependent reflectance properties of Pavo cristatus (the common peacock) feathers, a species of peafowl very well known to exhibit bright and saturated iridescent colors. We show that multispectral reflectance imaging and PCASF approaches can be used as effective tools for spectral recognition of iridescent patterns in the visible spectrum and provide meaningful information for spectral classification of the irregularity of the microstructure in iridescent plumage.This research was developed during a visiting research stay of Dr. José M. Medina in the Departamento de Óptica, Universidad de Granada, Spain. We thank to José Medina and Rosalía Ruiz who provided the peacock samples, to David Porcel and Juan de Dios Bueno from the Servicio de Microscopía, (Centro de Instrumentación Científica, Universidad de Granada) for technical assessment, and to the Color Imaging Group (Universidad de Granada) for their hardware partial support. JMM and JAD acknowledge the Departmento de Óptica, Universidad de Granada, Spain. PV acknowledges USAF funding (FA9550-10-1-0020)

    QUEST Hierarchy for Hyperspectral Face Recognition

    Get PDF
    Face recognition is an attractive biometric due to the ease in which photographs of the human face can be acquired and processed. The non-intrusive ability of many surveillance systems permits face recognition applications to be used in a myriad of environments. Despite decades of impressive research in this area, face recognition still struggles with variations in illumination, pose and expression not to mention the larger challenge of willful circumvention. The integration of supporting contextual information in a fusion hierarchy known as QUalia Exploitation of Sensor Technology (QUEST) is a novel approach for hyperspectral face recognition that results in performance advantages and a robustness not seen in leading face recognition methodologies. This research demonstrates a method for the exploitation of hyperspectral imagery and the intelligent processing of contextual layers of spatial, spectral, and temporal information. This approach illustrates the benefit of integrating spatial and spectral domains of imagery for the automatic extraction and integration of novel soft features (biometric). The establishment of the QUEST methodology for face recognition results in an engineering advantage in both performance and efficiency compared to leading and classical face recognition techniques. An interactive environment for the testing and expansion of this recognition framework is also provided
    • …
    corecore