185 research outputs found

    Cross-eyed - cross-spectral iris/periocular recognition database and competition

    Get PDF
    This work presents a novel dual-spectrum database containing both iris and periocular images synchronously captured from a distance and within a realistic indoor environment. This database was used in the 1st Cross-Spectrum Iris/Periocular Recognition Competition (Cross-Eyed 2016). This competition aimed at recording recent advances in cross- spectrum iris and periocular recognition. Six submissions were evaluated for cross-spectrum periocular recognition, and three for iris recognition. The submitted algorithms are briefly introduced. Detailed results are reported in this paper, and comparison of the results is discussed

    Multispectral scleral patterns for ocular biometric recognition

    Get PDF
    Biometrics is the science of recognizing people based on their physical or behavioral traits such as face, fingerprints, iris, and voice. Among the various traits studied in the literature, ocular biometrics has gained popularity due to the significant progress made in iris recognition. However, iris recognition is unfavorably influenced by the non-frontal gaze direction of the eye with respect to the acquisition device. In such scenarios, additional parts of the eye, such as the sclera (the white of the eye) may be of significance. In this dissertation, we investigate the use of the sclera texture and the vasculature patterns evident in the sclera as potential biometric cues. Iris patterns are better discerned in the near infrared spectrum (NIR) while vasculature patterns are better discerned in the visible spectrum (RGB). Therefore, multispectral images of the eye, consisting of both NIR and RGB channels, were used in this work in order to ensure that both the iris and the vasculature patterns are successfully imaged.;The contributions of this work include the following. Firstly, a multispectral ocular database was assembled by collecting high-resolution color infrared images of the left and right eyes of 103 subjects using the DuncanTech MS 3100 multispectral camera. Secondly, a novel segmentation algorithm was designed to localize the spacial extent of the iris, sclera and pupil in the ocular images. The proposed segmentation algorithm is a combination of region-based and edge-based schemes that exploits the multispectral information. Thirdly, different feature extraction and matching method were used to determine the potential of utilizing the sclera and the accompanying vasculature pattern as biometric cues. The three specific matching methods considered in this work were keypoint-based matching, direct correlation matching, and minutiae matching based on blood vessel bifurcations. Fourthly, the potential of designing a bimodal ocular system that combines the sclera biometric with the iris biometric was explored.;Experiments convey the efficacy of the proposed segmentation algorithm in localizing the sclera and the iris. The use of keypoint-based matching was observed to result in the best recognition performance for the scleral patterns. Finally, the possibility of utilizing the scleral patterns in conjunction with the iris for recognizing ocular images exhibiting non-frontal gaze directions was established

    Iris Recognition in Multiple Spectral Bands: From Visible to Short Wave Infrared

    Get PDF
    The human iris is traditionally imaged in Near Infrared (NIR) wavelengths (700nm-900nm) for iris recognition. The absorption co-efficient of color inducing pigment in iris, called Melanin, decreases after 700nm thus minimizing its effect when iris is imaged at wavelengths greater than 700nm. This thesis provides an overview and explores the efficacy of iris recognition at different wavelength bands ranging from visible spectrum (450nm-700nm) to NIR (700nm-900nm) and Short Wave Infrared (900nm-1600nm). Different matching methods are investigated at different wavelength bands to facilitate cross-spectral iris recognition.;The iris recognition analysis in visible wavelengths provides a baseline performance when iris is captured using common digital cameras. A novel blob-based matching algorithm is proposed to match RGB (visible spectrum) iris images. This technique generates a match score based on the similarity between blob like structures in the iris images. The matching performance of the blob based matching method is compared against that of classical \u27Iris Code\u27 matching method, SIFT-based matching method and simple correlation matching, and results indicate that the blob-based matching method performs reasonably well. Additional experiments on the datasets show that the iris images can be matched with higher confidence for light colored irides than dark colored irides in the visible spectrum.;As part of the analysis in the NIR spectrum, iris images captured in visible spectrum are matched against those captured in the NIR spectrum. Experimental results on the WVU multispectral dataset show promise in achieving a good recognition performance when the images are captured using the same sensor under the same illumination conditions and at the same resolution. A new proprietary \u27FaceIris\u27 dataset is used to investigate the ability to match iris images from a high resolution face image in visible spectrum against an iris image acquired in NIR spectrum. Matching in \u27FaceIris\u27 dataset presents a scenario where the two images to be matched are obtained by different sensors at different wavelengths, at different ambient illumination and at different resolution. Cross-spectral matching on the \u27FaceIris\u27 dataset presented a challenge to achieve good performance. Also, the effect of the choice of the radial and angular parameters of the normalized iris image on matching performance is presented. The experiments on WVU multispectral dataset resulted in good separation between genuine and impostor score distributions for cross-spectral matching which indicates that iris images in obtained in visible spectrum can be successfully matched against NIR iris images using \u27IrisCode\u27 method.;Iris is also analyzed in the Short Wave Infrared (SWIR) spectrum to study the feasibility of performing iris recognition at these wavelengths. An image acquisition setup was designed to capture the iris at 100nm interval spectral bands ranging from 950nm to 1650nm. Iris images are analyzed at these wavelengths and various observations regarding the brightness, contrast and textural content are discussed. Cross-spectral and intra-spectral matching was carried out on the samples collected from 25 subjects. Experimental results on this small dataset show the possibility of performing iris recognition in 950nm-1350nm wavelength range. Fusion of match scores from intra-spectral matching at different wavelength bands is shown to improve matching performance in the SWIR domain

    Visual Surveillance and Biometrics: Practices, Challenges, and Possibilities

    Get PDF
    Visual surveillance is the latest paradigm for social security through machine intelligence. It includes the use of visual data captured by infrared sensors or visible-light cameras mounted in cars, corridors, traffic signals etc. Visual surveillance facilitates the classification of human behavior, crowd activity, and gesture analysis to achieve application-specific objectivesinfo:eu-repo/semantics/publishedVersio

    Conjunctival Vasculature (CV) as a unique modality for authentication, using Steady Illumination Colour Local Ternary Pattern (SIcLTP)

    Get PDF
    it has been proved that a new biometric modality based on the patterns of conjunctival vasculature performs well in visible spectrum. The vessels of the conjunctiva could be seen on the visible part of the sclera; these vessels are very rich and contain unique details in the visible spectrum of light. In this paper we have explored the feature extraction technique for conjunctival vasculature using Steady Illumination colour Local Ternary Patterns(SIcLTP). The concept of LTP as argued in various earlier published papers is that, it is very robust to noise and gives rich information at the pixel level. In this paper before feature extraction the images are converted into YIQ colour space from RGB colour space to do away with the redundant information demonstrated by RGB colour space. Further the image similarity and dissimilarity is found out using zero-mean sum of squared differences between the two equally sized images. The results received with AUC (Area Under ROC Curve) being 0.947, demonstrates the richness of the texture pattern of conjunctival vasculature and robustness of the method being used. It is concluded that this texture pattern is a very promising biometric modality which could be used for identification

    mEBAL2 Database and Benchmark: Image-based Multispectral Eyeblink Detection

    Full text link
    This work introduces a new multispectral database and novel approaches for eyeblink detection in RGB and Near-Infrared (NIR) individual images. Our contributed dataset (mEBAL2, multimodal Eye Blink and Attention Level estimation, Version 2) is the largest existing eyeblink database, representing a great opportunity to improve data-driven multispectral approaches for blink detection and related applications (e.g., attention level estimation and presentation attack detection in face biometrics). mEBAL2 includes 21,100 image sequences from 180 different students (more than 2 million labeled images in total) while conducting a number of e-learning tasks of varying difficulty or taking a real course on HTML initiation through the edX MOOC platform. mEBAL2 uses multiple sensors, including two Near-Infrared (NIR) and one RGB camera to capture facial gestures during the execution of the tasks, as well as an Electroencephalogram (EEG) band to get the cognitive activity of the user and blinking events. Furthermore, this work proposes a Convolutional Neural Network architecture as benchmark for blink detection on mEBAL2 with performances up to 97%. Different training methodologies are implemented using the RGB spectrum, NIR spectrum, and the combination of both to enhance the performance on existing eyeblink detectors. We demonstrate that combining NIR and RGB images during training improves the performance of RGB eyeblink detectors (i.e., detection based only on a RGB image). Finally, the generalization capacity of the proposed eyeblink detectors is validated in wilder and more challenging environments like the HUST-LEBW dataset to show the usefulness of mEBAL2 to train a new generation of data-driven approaches for eyeblink detection.Comment: This paper is under consideration at Pattern Recognition Letter
    corecore