477 research outputs found

    Uncertainty Analysis for the Classification of Multispectral Satellite Images Using SVMs and SOMs

    Get PDF
    Abstract: Classification of multispectral remotely sensed data with textural features is investigated with a special focus on uncertainty analysis in the produced land-cover maps. Much effort has already been directed into the research of satisfactory accuracy-assessment techniques in image classification, but a common approach is not yet universally adopted. We look at the relationship between hard accuracy and the uncertainty on the produced answers, introducing two measures based on maximum probability and a quadratic entropy. Their impact differs depending on the type of classifier. In this paper, we deal with two different classification strategies, based on support vector machines (SVMs) and Kohonen's self-organizingmaps (SOMs), both suitably modified to give soft answers. Once the multiclass probability answer vector is available for each pixel in the image, we studied the behavior of the overall classification accuracy as a function of the uncertainty associated with each vector, given a hard-labeled test set. The experimental results show that the SVM with one-versus-one architecture and linear kernel clearly outperforms the other supervised approaches in terms of overall accuracy. On the other hand, our analysis reveals that the proposed SOM-based classifier, despite its unsupervised learning procedure, is able to provide soft answers which are the best candidates for a fusion with supervised results

    Multi-Decadal Changes in Mangrove Extent, Age and Species in the Red River Estuaries of Viet Nam

    Get PDF
    This research investigated the performance of four different machine learning supervised image classifiers: artificial neural network (ANN), decision tree (DT), random forest (RF), and support vector machine (SVM) using SPOT-7 and Sentinel-1 images to classify mangrove age and species in 2019 in a Red River estuary, typical of others found in northern Viet Nam. The four classifiers were chosen because they are considered to have high accuracy, however, their use in mangrove age and species classifications has thus far been limited. A time-series of Landsat images from 1975 to 2019 was used to map mangrove extent changes using the unsupervised classification method of iterative self-organizing data analysis technique (ISODATA) and a comparison with accuracy of K-means classification, which found that mangrove extent has increased, despite a fall in the 1980s, indicating the success of mangrove plantation and forest protection efforts by local people in the study area. To evaluate the supervised image classifiers, 183 in situ training plots were assessed, 70% of them were used to train the supervised algorithms, with 30% of them employed to validate the results. In order to improve mangrove species separations, Gram–Schmidt and principal component analysis image fusion techniques were applied to generate better quality images. All supervised and unsupervised (2019) results of mangrove age, species, and extent were mapped and accuracy was evaluated. Confusion matrices were calculated showing that the classified layers agreed with the ground-truth data where most producer and user accuracies were greater than 80%. The overall accuracy and Kappa coefficients (around 0.9) indicated that the image classifications were very good. The test showed that SVM was the most accurate, followed by DT, ANN, and RF in this case study. The changes in mangrove extent identified in this study and the methods tested for using remotely sensed data will be valuable to monitoring and evaluation assessments of mangrove plantation projects

    Designing fuzzy rule based classifier using self-organizing feature map for analysis of multispectral satellite images

    Full text link
    We propose a novel scheme for designing fuzzy rule based classifier. An SOFM based method is used for generating a set of prototypes which is used to generate a set of fuzzy rules. Each rule represents a region in the feature space that we call the context of the rule. The rules are tuned with respect to their context. We justified that the reasoning scheme may be different in different context leading to context sensitive inferencing. To realize context sensitive inferencing we used a softmin operator with a tunable parameter. The proposed scheme is tested on several multispectral satellite image data sets and the performance is found to be much better than the results reported in the literature.Comment: 23 pages, 7 figure

    OctaSOM - An octagonal based SOM lattice structure for biomedical problems

    Get PDF
    In this study, an octagonal-based self-organizing network’s lattice structure is proposed to allow more exploration and exploitation in updating the weights for better mapping and classification performances.The neighborhood of the octagonal-based lattice structure provides more nodes for the weights updating than standard hexagonal-based lattice structure. Based on our experiment, the octagonal-based lattice structure performance is better than standard hexagonal lattice structure on biomedical datasets for classification problem. This indicates that proposed algorithm is an alternative lattice structure for self-organizing network which give more wisdom to classification problems especially in the biomedical domains

    An automated artificial neural network system for land use/land cover classification from Landsat TM imagery. Remote Sens

    Get PDF
    Abstract: This paper focuses on an automated ANN classification system consisting of two modules: an unsupervised Kohonen’s Self-Organizing Mapping (SOM) neural network module, and a supervised Multilayer Perceptron (MLP) neural network module using the Backpropagation (BP) training algorithm. Two training algorithms were provided for the SOM network module: the standard SOM, and a refined SOM learning algorithm which incorporated Simulated Annealing (SA). The ability of our automated ANN system to perform Land-Use/Land-Cover (LU/LC) classifications of a Landsat Thematic Mapper (TM) image was tested using a supervised MLP network, an unsupervised SOM network, and a combination of SOM with SA network. Our case study demonstrated that the ANN classification system fulfilled the tasks of network training pattern creation, network training, and network generalization. The results from the three networks were assessed via a comparison with reference data derived from the high spatial resolution Digital Colour Infrared (CIR) Digital Orthophoto Quarter Quad (DOQQ) data. The supervised MLP network obtained the most accurate classification accuracy as compared to the twoRemote Sens. 2009, 1 244 unsupervised SOM networks. Additionally, the classification performance of the refine

    Comparison of Five Spatio-Temporal Satellite Image Fusion Models over Landscapes with Various Spatial Heterogeneity and Temporal Variation

    Get PDF
    In recent years, many spatial and temporal satellite image fusion (STIF) methods have been developed to solve the problems of trade-off between spatial and temporal resolution of satellite sensors. This study, for the first time, conducted both scene-level and local-level comparison of five state-of-art STIF methods from four categories over landscapes with various spatial heterogeneity and temporal variation. The five STIF methods include the spatial and temporal adaptive reflectance fusion model (STARFM) and Fit-FC model from the weight function-based category, an unmixing-based data fusion (UBDF) method from the unmixing-based category, the one-pair learning method from the learning-based category, and the Flexible Spatiotemporal DAta Fusion (FSDAF) method from hybrid category. The relationship between the performances of the STIF methods and scene-level and local-level landscape heterogeneity index (LHI) and temporal variation index (TVI) were analyzed. Our results showed that (1) the FSDAF model was most robust regardless of variations in LHI and TVI at both scene level and local level, while it was less computationally efficient than the other models except for one-pair learning; (2) Fit-FC had the highest computing efficiency. It was accurate in predicting reflectance but less accurate than FSDAF and one-pair learning in capturing image structures; (3) One-pair learning had advantages in prediction of large-area land cover change with the capability of preserving image structures. However, it was the least computational efficient model; (4) STARFM was good at predicting phenological change, while it was not suitable for applications of land cover type change; (5) UBDF is not recommended for cases with strong temporal changes or abrupt changes. These findings could provide guidelines for users to select appropriate STIF method for their own applications

    Advances in Multi-Sensor Data Fusion: Algorithms and Applications

    Get PDF
    With the development of satellite and remote sensing techniques, more and more image data from airborne/satellite sensors have become available. Multi-sensor image fusion seeks to combine information from different images to obtain more inferences than can be derived from a single sensor. In image-based application fields, image fusion has emerged as a promising research area since the end of the last century. The paper presents an overview of recent advances in multi-sensor satellite image fusion. Firstly, the most popular existing fusion algorithms are introduced, with emphasis on their recent improvements. Advances in main applications fields in remote sensing, including object identification, classification, change detection and maneuvering targets tracking, are described. Both advantages and limitations of those applications are then discussed. Recommendations are addressed, including: (1) Improvements of fusion algorithms; (2) Development of “algorithm fusion” methods; (3) Establishment of an automatic quality assessment scheme

    A Human-Centric Approach to Data Fusion in Post-Disaster Managment: The Development of a Fuzzy Set Theory Based Model

    Get PDF
    It is critical to provide an efficient and accurate information system in the post-disaster phase for individuals\u27 in order to access and obtain the necessary resources in a timely manner; but current map based post-disaster management systems provide all emergency resource lists without filtering them which usually leads to high levels of energy consumed in calculation. Also an effective post-disaster management system (PDMS) will result in distribution of all emergency resources such as, hospital, storage and transportation much more reasonably and be more beneficial to the individuals in the post disaster period. In this Dissertation, firstly, semi-supervised learning (SSL) based graph systems was constructed for PDMS. A Graph-based PDMS\u27 resource map was converted to a directed graph that presented by adjacent matrix and then the decision information will be conducted from the PDMS by two ways, one is clustering operation, and another is graph-based semi-supervised optimization process. In this study, PDMS was applied for emergency resource distribution in post-disaster (responses phase), a path optimization algorithm based ant colony optimization (ACO) was used for minimizing the cost in post-disaster, simulation results show the effectiveness of the proposed methodology. This analysis was done by comparing it with clustering based algorithms under improvement ACO of tour improvement algorithm (TIA) and Min-Max Ant System (MMAS) and the results also show that the SSL based graph will be more effective for calculating the optimization path in PDMS. This research improved the map by combining the disaster map with the initial GIS based map which located the target area considering the influence of disaster. First, all initial map and disaster map will be under Gaussian transformation while we acquired the histogram of all map pictures. And then all pictures will be under discrete wavelet transform (DWT), a Gaussian fusion algorithm was applied in the DWT pictures. Second, inverse DWT (iDWT) was applied to generate a new map for a post-disaster management system. Finally, simulation works were proposed and the results showed the effectiveness of the proposed method by comparing it to other fusion algorithms, such as mean-mean fusion and max-UD fusion through the evaluation indices including entropy, spatial frequency (SF) and image quality index (IQI). Fuzzy set model were proposed to improve the presentation capacity of nodes in this GIS based PDMS
    corecore