18,254 research outputs found

    An Abstract Approach to Consequence Relations

    Full text link
    We generalise the Blok-J\'onsson account of structural consequence relations, later developed by Galatos, Tsinakis and other authors, in such a way as to naturally accommodate multiset consequence. While Blok and J\'onsson admit, in place of sheer formulas, a wider range of syntactic units to be manipulated in deductions (including sequents or equations), these objects are invariably aggregated via set-theoretical union. Our approach is more general in that non-idempotent forms of premiss and conclusion aggregation, including multiset sum and fuzzy set union, are considered. In their abstract form, thus, deductive relations are defined as additional compatible preorderings over certain partially ordered monoids. We investigate these relations using categorical methods, and provide analogues of the main results obtained in the general theory of consequence relations. Then we focus on the driving example of multiset deductive relations, providing variations of the methods of matrix semantics and Hilbert systems in Abstract Algebraic Logic

    Ordinal Measures of the Set of Finite Multisets

    Get PDF
    Well-partial orders, and the ordinal invariants used to measure them, are relevant in set theory, program verification, proof theory and many other areas of computer science and mathematics. In this article we focus on a common data structure in programming, finite multisets of some well partial order. There are two natural orders one can define on the set of finite multisets of a partial order: the multiset embedding and the multiset ordering. Though the maximal order type of these orders is already known, other ordinal invariants remain mostly unknown. Our main contributions are expressions to compute compositionally the width of the multiset embedding and the height of the multiset ordering. Furthermore, we provide a new ordinal invariant useful for characterizing the width of the multiset ordering

    Neural Injective Functions for Multisets, Measures and Graphs via a Finite Witness Theorem

    Full text link
    Injective multiset functions have a key role in the theoretical study of machine learning on multisets and graphs. Yet, there remains a gap between the provably injective multiset functions considered in theory, which typically rely on polynomial moments, and the multiset functions used in practice, which rely on neural moments\textit{neural moments} \unicode{x2014} whose injectivity on multisets has not been studied to date. In this paper, we bridge this gap by showing that moments of neural networks do define injective multiset functions, provided that an analytic non-polynomial activation is used. The number of moments required by our theory is optimal essentially up to a multiplicative factor of two. To prove this result, we state and prove a finite witness theorem\textit{finite witness theorem}, which is of independent interest. As a corollary to our main theorem, we derive new approximation results for functions on multisets and measures, and new separation results for graph neural networks. We also provide two negative results: (1) moments of piecewise-linear neural networks cannot be injective multiset functions; and (2) even when moment-based multiset functions are injective, they can never be bi-Lipschitz.Comment: NeurIPS 2023 camera-read

    Information Theory over Multisets

    Get PDF
    Starting from Shannon theory of information, this paper presents the case of producing information in the form of multisets, and encoding information using multisets. We review the entropy rate of a multiset information source and derive a formula for the information content of a multiset. Then we study the encoder and channel part of the system, obtaining some results about multiset encoding length and channel capacity

    The Multiset Partition Algebra: Diagram-Like Bases and Representations

    Get PDF
    There is a classical connection between the representation theory of the symmetric group and the general linear group called Schur--Weyl Duality. Variations on this principle yield analogous connections between the symmetric group and other objects such as the partition algebra and more recently the multiset partition algebra. The partition algebra has a well-known basis indexed by graph-theoretic diagrams which allows the multiplication in the algebra to be understood visually as combinations of these diagrams. My thesis begins with a construction of an analogous basis for the multiset partition algebra. It continues with applications of this basis to constructing the irreducible representations of the multiset partition algebra and analysis of subalgebras analogous to the Tanabe algebras and the Brauer algebra. Finally, I address connections between the multiset partition algebra and longstanding questions in the representation theory of the symmetric group including the Kronecker problem and the restriction problem from GL_n to S_n

    Standard monomial theory for wonderful varieties

    Full text link
    A general setting for a standard monomial theory on a multiset is introduced and applied to the Cox ring of a wonderful variety. This gives a degeneration result of the Cox ring to a multicone over a partial flag variety. Further, we deduce that the Cox ring has rational singularities.Comment: v3: 20 pages, final version to appear on Algebras and Representation Theory. The final publication is available at Springer via http://dx.doi.org/10.1007/s10468-015-9586-z. v2: 20 pages, examples added in Section 3 and in Section
    • …
    corecore