3,795 research outputs found

    Filtering Algorithms for the Multiset Ordering Constraint

    Get PDF
    Constraint programming (CP) has been used with great success to tackle a wide variety of constraint satisfaction problems which are computationally intractable in general. Global constraints are one of the important factors behind the success of CP. In this paper, we study a new global constraint, the multiset ordering constraint, which is shown to be useful in symmetry breaking and searching for leximin optimal solutions in CP. We propose efficient and effective filtering algorithms for propagating this global constraint. We show that the algorithms are sound and complete and we discuss possible extensions. We also consider alternative propagation methods based on existing constraints in CP toolkits. Our experimental results on a number of benchmark problems demonstrate that propagating the multiset ordering constraint via a dedicated algorithm can be very beneficial

    Solving Set Constraint Satisfaction Problems using ROBDDs

    Full text link
    In this paper we present a new approach to modeling finite set domain constraint problems using Reduced Ordered Binary Decision Diagrams (ROBDDs). We show that it is possible to construct an efficient set domain propagator which compactly represents many set domains and set constraints using ROBDDs. We demonstrate that the ROBDD-based approach provides unprecedented flexibility in modeling constraint satisfaction problems, leading to performance improvements. We also show that the ROBDD-based modeling approach can be extended to the modeling of integer and multiset constraint problems in a straightforward manner. Since domain propagation is not always practical, we also show how to incorporate less strict consistency notions into the ROBDD framework, such as set bounds, cardinality bounds and lexicographic bounds consistency. Finally, we present experimental results that demonstrate the ROBDD-based solver performs better than various more conventional constraint solvers on several standard set constraint problems

    Well Structured Transition Systems with History

    Get PDF
    We propose a formal model of concurrent systems in which the history of a computation is explicitly represented as a collection of events that provide a view of a sequence of configurations. In our model events generated by transitions become part of the system configurations leading to operational semantics with historical data. This model allows us to formalize what is usually done in symbolic verification algorithms. Indeed, search algorithms often use meta-information, e.g., names of fired transitions, selected processes, etc., to reconstruct (error) traces from symbolic state exploration. The other interesting point of the proposed model is related to a possible new application of the theory of well-structured transition systems (wsts). In our setting wsts theory can be applied to formally extend the class of properties that can be verified using coverability to take into consideration (ordered and unordered) historical data. This can be done by using different types of representation of collections of events and by combining them with wsts by using closure properties of well-quasi orderings.Comment: In Proceedings GandALF 2015, arXiv:1509.0685

    On Formal Consistency between Value and Coordination Models

    Get PDF
    In information systems (IS) engineering dierent techniques for modeling inter-organizational collaborations are applied. In particular, value models estimate the profitability for involved stakeholders, whereas coordination models are used to agree upon the inter-organizational processes before implementing them. During the execution of inter-organizational collaboration, in addition, event logs are collected by the individual organizations representing another view of the IS. The combination of the two models and the event log represent the IS and they should therefore be consistent, i.e., not contradict each other. Since these models are provided by dierent user groups during design time and the event log is collected during run-time consistency is not straight forward. Inconsistency occurs when models contain a conflicting description of the same information, i.e., there exists a conflicting overlap between the models. In this paper we introduce an abstraction of value models, coordination models and event logs which allows ensuring and maintaining alignment between models and event log. We demonstrate its use by outlining a proof of an inconsistency resolution result based on this abstraction. Thus, the introduction of abstractions allows to explore formal inter-model relations based on consistency

    Violator Spaces: Structure and Algorithms

    Get PDF
    Sharir and Welzl introduced an abstract framework for optimization problems, called LP-type problems or also generalized linear programming problems, which proved useful in algorithm design. We define a new, and as we believe, simpler and more natural framework: violator spaces, which constitute a proper generalization of LP-type problems. We show that Clarkson's randomized algorithms for low-dimensional linear programming work in the context of violator spaces. For example, in this way we obtain the fastest known algorithm for the P-matrix generalized linear complementarity problem with a constant number of blocks. We also give two new characterizations of LP-type problems: they are equivalent to acyclic violator spaces, as well as to concrete LP-type problems (informally, the constraints in a concrete LP-type problem are subsets of a linearly ordered ground set, and the value of a set of constraints is the minimum of its intersection).Comment: 28 pages, 5 figures, extended abstract was presented at ESA 2006; author spelling fixe
    corecore