336 research outputs found

    The Heat is On: Exploring User Behaviour in a Multisensory Virtual Environment for Fire Evacuation

    Full text link
    Understanding validity of user behaviour in Virtual Environments (VEs) is critical as they are increasingly being used for serious Health and Safety applications such as predicting human behaviour and training in hazardous situations. This paper presents a comparative study exploring user behaviour in VE-based fire evacuation and investigates whether this is affected by the addition of thermal and olfactory simulation. Participants (N=43) were exposed to a virtual fire in an office building. Quantitative and qualitative analyses of participant attitudes and behaviours found deviations from those we would expect in real life (e.g. pre-evacuation actions), but also valid behaviours like fire avoidance. Potentially important differences were found between multisensory and audiovisual-only conditions (e.g. perceived urgency). We conclude VEs have significant potential in safety-related applications, and that multimodality may afford additional uses in this context, but the identified limitations of behavioural validity must be carefully considered to avoid misapplication of the technology.Comment: CHI Conference on Human Factors in Computing System

    Effects of an engaging maintenance task on fire evacuation delays and presence in virtual reality

    Get PDF
    The current study aims to investigate the capability of occupants of a powerhouse simulation to sense a fire and initiate evacuation while engaged with a task. For this reason, the study involved the maintenance task of replacing the air filter of a gas-powered engine through a series of instructions. The virtual reality-based accident causation model (VR-ACM) consisting of 3D modeling and simulation, accident causation, and safety training was adapted to address the study's aims. Two groups of participants were immersed in the virtual realm as occupants of the powerhouse to determine the pre-movement time and the evacuation duration under distinct scenarios. The first scenario constituted the experimental group (n = 26), who were assigned to replace the filters, while the second scenario (control n = 26) performed no task before the fire outbreak. An independent samples t-test revealed a significant difference in the pre-movement time of the groups, which suggested a decline in the perception of the experimental group due to the task. Further assessment revealed a consequential transfer of the delay at the pre-movement phase to the evacuation delay of the experimental group from the powerhouse. Secondly, the differences in interactivity implied that the experimental group exhibited a higher level of involvement and distraction in the Presence measurement than the control group. To this end, a virtual reality (VR) environment's performance and real-time functionality during a maintenance task simulation have been experimented with in an emergency fire evacuation scenario to ascertain safety concerns.© 2021 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)fi=vertaisarvioitu|en=peerReviewed

    Simulation-Based Countermeasures Towards Accident Prevention : Virtual Reality Utilization in Industrial Processes and Activities

    Get PDF
    Despite growing industrial interests in fully immersive virtual reality (VR) applications for safety countermeasures, there is scanty research on the subject in the context of accident prevention during manufacturing processes and plant maintenance activities. This dissertation aims to explore and experiment with VR for accident prevention by targeting three workplace safety countermeasures: fire evacuation drills, hazard identification and risk assessments (HIRA), and emergency preparedness and response (EPR) procedures. Drawing on the virtual reality accident causation model (VR-ACM) (i.e., 3D modelling and simulation, accident causation, and safety drills) and the fire evacuation training model, two industrial 3D simulation models were utilized for the immersive assessment and training. These were a lithium-ion battery (LIB) manufacturing factory and a gas power plant (GPP). In total, five studies (publications) were designed to demonstrate the potential of VR in accident prevention during the manufacturing processes and maintenance activities at the facility conceptual stages. Two studies were with the LIB factory simulation to identify inherent hazards and assess risks for redesigning the factory to ensure workplace safety compliance. The other three studies constituted fire hazard identifications, emergency evacuations and hazard control/mitigations during the maintenance activity in the GPP simulation. Both study models incorporated several participants individually immersed in the virtual realm to experience the accident phenomena intuitively. These participants provided feedback for assessing the research objectives. Results of the studies indicated that several inherent hazards in the LIB factory were identified and controlled/mitigated. Secondly, the GPP experiment results suggested that although the maintenance activity in the virtual realm increased the perception of presence, a statistically significant delay was recorded at the pre-movement stage due to the lack of situational safety awareness. Overall, the study demonstrates that participants immersed in a VR plant maintenance activity and manufacturing factory process simulation environments can experience real-time emergency scenarios and conditions necessary for implementing the essential safety countermeasures to prevent accidents.Vaikka kiinnostus virtuaalitodellisuuden (VR) käyttöön turvallisuuden varotoimissa teollisuudessa on kasvanut, tutkimuksia ei ole juurikaan tehty onnettomuuksien ehkäisystä valmistus- ja kunnossapitotoiminnassa. Tämän väitöskirjan tavoitteena on tutkia ja kokeilla VR:ää tapaturmien ehkäisyssä kohdistuen kolmeen työpaikan turvallisuuden varotoimeen: paloharjoitukset, riskien arvioinnit sekä hätätilanteiden valmiusmenettelyt ja toimintasuunnitelmat (EPR). Kokemuksellisessa ja uppouttavassa koulutuksessa hyödynnettiin kahta teollisuuden 3D-simulointimallia, jotka nojautuvat virtuaalitodellisuuden onnettomuuksien aiheutumismalliin (VR-ACM) (eli 3D-mallinnus- ja simulointi, onnettomuussyy- ja turvallisuuskoulutus) sekä paloharjoitusmalliin. Nämä 3D-simulointimallit ovat litiuminoniakkuja (LIB) valmistava tehdas, joka rakennettiin Visual Components 3D-simulointiohjelmistolla (versio 4.0) ja kaasuvoimala (GPP) Unrealin reaaliaikaisella pelimoottorilla (versio 4.2). Yhteensä viisi tutkimusta (julkaisua) suunniteltiin havainnollistamaan VR:n potentiaalia tapaturmien ehkäisyssä valmistusprosessin layout-suunnittelun ja tehtaan konseptivaiheissa tehtävän kunnossapidon aikana. Kaksi tutkimusta tehtiin LIB-tehdassimulaatiolla vaarojen tunnistamiseksi sekä riskien arvioimiseksi. Tutkimukset tehtiin tehtaan uudelleensuunnittelua varten, työturvallisuuden noudattamisen varmistamiseksi. Muut kolme tutkimusta käsittelevät palovaaran tunnistamista, hätäevakuointia ja riskien vähentämistä huoltotoiminnan aikana GPP-simulaatiossa. Molemmissa tutkimusmalleissa oli useita virtuaalimaailmaan uppoutuneita osallistujia, jotka saivat kokea onnettomuudet yksilöllisesti ja intuitiivisesti. Osallistujat antoivat palautetta kokeen jälkeisessä kyselyssä. Kyselyn tuloksien avulla LIB-tehtaassa tunnistettiin ja lievennettiin useita vaaroja. GPP-kokeilun tulokset viittasivat siihen, että vaikka ylläpitotoiminta virtuaalimaailmassa lisäsi teleläsnäoloa, tilastollisesti merkittävä viive kirjattiin liikettä edeltävässä vaiheessa turvallisuustietoisuuden puuteen vuoksi. Kaiken kaikkiaan tutkimus osoittaa, että VR-laitoksen kunnossapitotoimintaan ja tuotantotehtaan prosessisimulaatioympäristöihin uppoutuvat osallistujat voivat kokea reaaliaikaisia hätäskenaarioita ja olosuhteita, jotka ovat välttämättömiä olennaisten turvallisuustoimien toteuttamiseksi.fi=vertaisarvioitu|en=peerReviewed

    Multimodal virtual environments: an opportunity to improve fire safety training?

    Get PDF
    Fires and fire-related fatalities remain a tragic and frequent occurrence. Evidence has shown that humans adopt sub-optimal behaviours during fire incidents and, therefore, training is one possible means to improve occupant survival rates. We present the potential benefits of using Virtual Environment Training (VET) for fire evacuation. These include experiential and active learning, the ability to interact with contexts which would be dangerous to experience in real life, the ability to customise training and scenarios to the learner, and analytics on learner performance. While several studies have investigated fire safety in VET, generally with positive outcomes, challenges related to cybersickness, interaction and content creation remain. Moreover, issues such as lack of behavioural realism have been attributed to the lack realistic sensory feedback. We argue for multimodal (visual, audio, olfactory, heat) virtual fire safety training to address limitations with existing simulators, and ultimately improve the outcomes of fire incidents. © 2020, Institution of Occupational Safety and Health

    Exploring the Use of Audio-Visual Feedback within 3D Virtual Environments to Provide Complex Sensory Cues for Scenario-Based Learning

    Get PDF
    The continuous quest for ever increasing fidelity in 3D virtual worlds is running parallel to the emergence and adoption of low-cost technologies to implement such environments. In education and training, complex simulations can now be implemented on standard desktop technologies. However, such tools lack the means to represent multisensory data beyond audio-visual feedback. This paper reports on a study that involved the design, development and implementation of a 3D learning environment for underground mine evacuation. The requirements of the environment are discussed in terms of the sensory information that needs to be conveyed and techniques are described to achieve this using multiple modes of representation, appropriate levels of abstraction and synesthesia to make up for the lack of tactile and olfactory sensory cues. The study found that audio-visual cues that used such techniques were effective in communicating complex sensory information for novice miners

    Opportunities for Supporting Self-efficacy through Orientation & Mobility Training Technologies for Blind and Partially Sighted People

    Get PDF
    Orientation and mobility (O&M) training provides essential skills and techniques for safe and independent mobility for blind and partially sighted (BPS) people. The demand for O&M training is increasing as the number of people living with vision impairment increases. Despite the growing portfolio of HCI research on assistive technologies (AT), few studies have examined the experiences of BPS people during O&M training, including the use of technology to aid O&M training. To address this gap, we conducted semi-structured interviews with 20 BPS people and 8 Mobility and Orientation Trainers (MOT). The interviews were thematically analysed and organised into four overarching themes discussing factors influencing the self-efficacy belief of BPS people: Tools and Strategies for O&M training, Technology Use in O&M Training, Changing Personal and Social Circumstances, and Social Influences. We further highlight opportunities for combinations of multimodal technologies to increase access to and effectiveness of O&M training

    Understanding the challenges of immersive technology use in the architecture and construction industry: A systematic review

    Get PDF
    Despite the increasing scholarly attention being given to immersive technology applications in the architecture and construction industry, very few studies have explored the key challenges associated with their usage, with no aggregation of findings or knowledge. To bridge this gap and gain a better understanding of the state-of-the-art immersive technology application in the architecture and construction sector, this study reviews and synthesises the existing research evidence through a systematic review. Based on rigorous inclusion and exclusion criteria, 51 eligible articles published between 2010 and 2019 (inclusive) were selected for the final review. Predicted upon a wide range of scholarly journals, this study develops a generic taxonomy consisting of various dimensions. The results revealed nine (9) critical challenges which were further ranked in the following order: Infrastructure; Algorithm Development; Interoperability; General Health and Safety; Virtual Content Modelling; Cost; Skills Availability; Multi-Sensory Limitations; and Ethical Issues
    corecore