606 research outputs found

    Symbiosis in computational vision systems

    Get PDF
    AbstractWhile the goal of computational vision systems is the totally automated understanding of images, it is not necessary for this goal to be achieved before practical vision systems can be developed. In particular, systems that require some amount of human intervention can be applied to real problems with beneficial results. In “symbiotic” vision systems the computer brings something to bear on the problem that either replaces or supplements a subtask that would otherwise be done by a human expert.In symbiotic systems there is a large range of possibilities for the type and amount of interaction that the human expert must provide. This can range from minor aid to the computer system, when it reaches an ambiguity that it cannot resolve, to major control of the processing in complicated regions of the image that are of primary interest. Symbiotic vision systems must allow the user to access the system at the point in the range that is suitable. In addition, the system must have facilities to both present information and accept “advice” from the expert in a way that is natural and convenient.Two example vision systems will illustrate different ways in which these problems have been solved. The first, MISSEE, uses a cycle of perception combined with a schema-based system architecture to provide a flexible framework in which the user can select the amount of interaction he wishes to undertake. The second, which carries out the normal moveout phase of seismic data processing, has a more limited focus, but provides a natural means of communication

    Multisensory Integration as per Technological Advances: A Review

    Get PDF
    Multisensory integration research has allowed us to better understand how humans integrate sensory information to produce a unitary experience of the external world. However, this field is often challenged by the limited ability to deliver and control sensory stimuli, especially when going beyond audio–visual events and outside laboratory settings. In this review, we examine the scope and challenges of new technology in the study of multisensory integration in a world that is increasingly characterized as a fusion of physical and digital/virtual events. We discuss multisensory integration research through the lens of novel multisensory technologies and, thus, bring research in human–computer interaction, experimental psychology, and neuroscience closer together. Today, for instance, displays have become volumetric so that visual content is no longer limited to 2D screens, new haptic devices enable tactile stimulation without physical contact, olfactory interfaces provide users with smells precisely synchronized with events in virtual environments, and novel gustatory interfaces enable taste perception through levitating stimuli. These technological advances offer new ways to control and deliver sensory stimulation for multisensory integration research beyond traditional laboratory settings and open up new experimentations in naturally occurring events in everyday life experiences. Our review then summarizes these multisensory technologies and discusses initial insights to introduce a bridge between the disciplines in order to advance the study of multisensory integration

    A Biosymtic (Biosymbiotic Robotic) Approach to Human Development and Evolution. The Echo of the Universe.

    Get PDF
    In the present work we demonstrate that the current Child-Computer Interaction paradigm is not potentiating human development to its fullest – it is associated with several physical and mental health problems and appears not to be maximizing children’s cognitive performance and cognitive development. In order to potentiate children’s physical and mental health (including cognitive performance and cognitive development) we have developed a new approach to human development and evolution. This approach proposes a particular synergy between the developing human body, computing machines and natural environments. It emphasizes that children should be encouraged to interact with challenging physical environments offering multiple possibilities for sensory stimulation and increasing physical and mental stress to the organism. We created and tested a new set of computing devices in order to operationalize our approach – Biosymtic (Biosymbiotic Robotic) devices: “Albert” and “Cratus”. In two initial studies we were able to observe that the main goal of our approach is being achieved. We observed that, interaction with the Biosymtic device “Albert”, in a natural environment, managed to trigger a different neurophysiological response (increases in sustained attention levels) and tended to optimize episodic memory performance in children, compared to interaction with a sedentary screen-based computing device, in an artificially controlled environment (indoors) - thus a promising solution to promote cognitive performance/development; and that interaction with the Biosymtic device “Cratus”, in a natural environment, instilled vigorous physical activity levels in children - thus a promising solution to promote physical and mental health

    Earth as Interface: Exploring chemical senses with Multisensory HCI Design for Environmental Health Communication

    Get PDF
    As environmental problems intensify, the chemical senses -that is smell and taste, are the most relevantsenses to evidence them.As such, environmental exposure vectors that can reach human beings comprise air,food, soil and water[1].Within this context, understanding the link between environmental exposures andhealth[2]is crucial to make informed choices, protect the environment and adapt to new environmentalconditions[3].Smell and taste lead therefore to multi-sensorial experiences which convey multi-layered information aboutlocal and global events[4]. However, these senses are usually absent when those problems are represented indigital systems. The multisensory HCIdesign framework investigateschemical sense inclusion withdigital systems[5]. Ongoing efforts tackledigitalization of smell and taste for digital delivery, transmission or substitution [6]. Despite experimentsproved technological feasibility, its dissemination depends on relevant applicationdevelopment[7].This thesis aims to fillthose gaps by demonstratinghow chemical senses provide the means to link environment and health based on scientific andgeolocation narratives [8], [9],[10]. We present a Multisensory HCI design process which accomplished symbolicdisplaying smell and taste and led us to a new multi-sensorial interaction system presented herein. We describe the conceptualization, design and evaluation of Earthsensum, an exploratory case study project.Earthsensumoffered to 16 participants in the study, environmental smell and taste experiences about real geolocations to participants of the study. These experiences were represented digitally using mobilevirtual reality (MVR) and mobile augmented reality (MAR). Its technologies bridge the real and digital Worlds through digital representations where we can reproduce the multi-sensorial experiences. Our study findings showed that the purposed interaction system is intuitive and can lead not only to a betterunderstanding of smell and taste perception as also of environmental problems. Participants comprehensionabout the link between environmental exposures and health was successful and they would recommend thissystem as education tools. Our conceptual design approach was validated and further developments wereencouraged.In this thesis,we demonstratehow to applyMultisensory HCI methodology to design with chemical senses. Weconclude that the presented symbolic representation model of smell and taste allows communicatingtheseexperiences on digital platforms. Due to its context-dependency, MVR and MAR platforms are adequatetechnologies to be applied for this purpose.Future developments intend to explore further the conceptual approach. These developments are centredon the use of the system to induce hopefully behaviourchange. Thisthesisopens up new application possibilities of digital chemical sense communication,Multisensory HCI Design and environmental health communication.À medida que os problemas ambientais se intensificam, os sentidos químicos -isto é, o cheiroe sabor, são os sentidos mais relevantes para evidenciá-los. Como tais, os vetores de exposição ambiental que podem atingir os seres humanos compreendem o ar, alimentos, solo e água [1]. Neste contexto, compreender a ligação entre as exposições ambientais e a saúde [2] é crucial para exercerescolhas informadas, proteger o meio ambiente e adaptar a novas condições ambientais [3]. O cheiroe o saborconduzemassima experiências multissensoriais que transmitem informações de múltiplas camadas sobre eventos locais e globais [4]. No entanto, esses sentidos geralmente estão ausentes quando esses problemas são representados em sistemas digitais. A disciplina do design de Interação Humano-Computador(HCI)multissensorial investiga a inclusão dossentidos químicos em sistemas digitais [9]. O seu foco atual residena digitalização de cheirose sabores para o envio, transmissão ou substituiçãode sentidos[10]. Apesar dasexperimentaçõescomprovarem a viabilidade tecnológica, a sua disseminação está dependentedo desenvolvimento de aplicações relevantes [11]. Estatese pretendepreencher estas lacunas ao demonstrar como os sentidos químicos explicitama interconexãoentre o meio ambiente e a saúde, recorrendo a narrativas científicas econtextualizadasgeograficamente[12], [13], [14]. Apresentamos uma metodologiade design HCImultissensorial que concretizouum sistema de representação simbólica de cheiro e sabor e nos conduziu a um novo sistema de interação multissensorial, que aqui apresentamos. Descrevemos o nosso estudo exploratório Earthsensum, que integra aconceptualização, design e avaliação. Earthsensumofereceu a 16participantes do estudo experiências ambientais de cheiro e sabor relacionadas com localizações geográficasreais. Essas experiências foram representadas digitalmente através derealidade virtual(VR)e realidade aumentada(AR).Estas tecnologias conectamo mundo real e digital através de representações digitais onde podemos reproduzir as experiências multissensoriais. Os resultados do nosso estudo provaramque o sistema interativo proposto é intuitivo e pode levar não apenas a uma melhor compreensão da perceção do cheiroe sabor, como também dos problemas ambientais. O entendimentosobre a interdependência entre exposições ambientais e saúde teve êxitoe os participantes recomendariam este sistema como ferramenta para aeducação. A nossa abordagem conceptual foi positivamentevalidadae novos desenvolvimentos foram incentivados. Nesta tese, demonstramos como aplicar metodologiasde design HCImultissensorialpara projetar com ossentidos químicos. Comprovamosque o modelo apresentado de representação simbólica do cheiroe do saborpermite comunicar essas experiênciasem plataformas digitais. Por serem dependentesdocontexto, as plataformas de aplicações emVR e AR são tecnologias adequadaspara este fim.Desenvolvimentos futuros pretendem aprofundar a nossa abordagemconceptual. Em particular, aspiramos desenvolvera aplicaçãodo sistema para promover mudanças de comportamento. Esta tese propõenovas possibilidades de aplicação da comunicação dos sentidos químicos em plataformas digitais, dedesign multissensorial HCI e de comunicação de saúde ambiental

    Body-Borne Computers as Extensions of Self

    Get PDF
    The opportunities for wearable technologies go well beyond always-available information displays or health sensing devices. The concept of the cyborg introduced by Clynes and Kline, along with works in various fields of research and the arts, offers a vision of what technology integrated with the body can offer. This paper identifies different categories of research aimed at augmenting humans. The paper specifically focuses on three areas of augmentation of the human body and its sensorimotor capabilities: physical morphology, skin display, and somatosensory extension. We discuss how such digital extensions relate to the malleable nature of our self-image. We argue that body-borne devices are no longer simply functional apparatus, but offer a direct interplay with the mind. Finally, we also showcase some of our own projects in this area and shed light on future challenges

    16th Sound and Music Computing Conference SMC 2019 (28–31 May 2019, Malaga, Spain)

    Get PDF
    The 16th Sound and Music Computing Conference (SMC 2019) took place in Malaga, Spain, 28-31 May 2019 and it was organized by the Application of Information and Communication Technologies Research group (ATIC) of the University of Malaga (UMA). The SMC 2019 associated Summer School took place 25-28 May 2019. The First International Day of Women in Inclusive Engineering, Sound and Music Computing Research (WiSMC 2019) took place on 28 May 2019. The SMC 2019 TOPICS OF INTEREST included a wide selection of topics related to acoustics, psychoacoustics, music, technology for music, audio analysis, musicology, sonification, music games, machine learning, serious games, immersive audio, sound synthesis, etc

    Cognitively-Engineered Multisensor Data Fusion Systems for Military Applications

    Get PDF
    The fusion of imagery from multiple sensors is a field of research that has been gaining prominence in the scientific community in recent years. The technical aspects of combining multisensory information have been and are currently being studied extensively. However, the cognitive aspects of multisensor data fusion have not received so much attention. Prior research in the field of cognitive engineering has shown that the cognitive aspects of any human-machine system should be taken into consideration in order to achieve systems that are both safe and useful. The goal of this research was to model how humans interpret multisensory data, and to evaluate the value of a cognitively-engineered multisensory data fusion system as an effective, time-saving means of presenting information in high- stress situations. Specifically, this research used principles from cognitive engineering to design, implement, and evaluate a multisensor data fusion system for pilots in high-stress situations. Two preliminary studies were performed, and concurrent protocol analysis was conducted to determine how humans interpret and mentally fuse information from multiple sensors in both low- and high-stress environments. This information was used to develop a model for human processing of information from multiple data sources. This model was then implemented in the development of algorithms for fusing imagery from several disparate sensors (visible and infrared). The model and the system as a whole were empirically evaluated in an experiment with fighter pilots in a simulated combat environment. The results show that the model is an accurate depiction of how humans interpret information from multiple disparate sensors, and that the algorithms show promise for assisting fighter pilots in quicker and more accurate target identification

    Virtual and Mixed Reality in Telerobotics: A Survey

    Get PDF

    Metaverse marketing: How the metaverse will shape the future of consumer research and practice

    Get PDF
    The initial hype and fanfare from the Meta Platforms view of how the metaverse could be brought to life has evolved into an ongoing discussion of not only the metaverse\u27s impact on users and organizations but also the societal and cultural implications of widespread usage. The potential of consumer interaction with brands within the metaverse has engendered significant debate within the marketing‐ focused discourse on the key challenges and transformative opportunities for marketers. Drawing on insights from expert contributors, this study examines the marketing implications of the hypothetical widespread adoption of the metaverse. We identify new research directions and propose a new framework offering valuable contributions for academia, practice, and policy makers. Our future research agenda culminates in a checklist for researchers which clarifies how the metaverse can be beneficial to digital marketing and advertising, branding, services, value creation, and consumer wellbeing
    corecore