1,921 research outputs found

    Multisensory experiences in HCI

    Get PDF
    The use of vision and audition for interaction dominated the field of human-computer interaction (HCI) for decades, despite the fact that nature has provided us with many more senses for perceiving and interacting with the world around us. Recently, HCI researchers have started trying to capitalize on touch, taste, and smell when designing interactive tasks, especially in gaming, multimedia, and art environments. Here we provide a snapshot of our research into touch, taste, and smell, which we’re carrying out at the Sussex Computer Human Interaction (SCHI—pronounced “sky”) Lab at the University of Sussex in Brighton, UK

    The how and why behind a multisensory art display

    Get PDF
    Designing multisensory experiences has always fascinated artists and scientists alike. In recent years, there has been a growing interest in multisensory experience design within the HCI community [1]. Next to advances in haptic technologies, we see novel work on olfactory and gustatory systems [2,3] and efforts in determining multisensory design spaces [4]. Moreover, artists, museum curators, and creative industries are interested in those emerging technologies for their own work. Here we present Tate Sensorium, a multisensory art display, as an example case for multisensory design

    LeviSense: a platform for the multisensory integration in levitating food and insights into its effect on flavour perception

    Get PDF
    Eating is one of the most multisensory experiences in everyday life. All of our five senses (i.e. taste, smell, vision, hearing and touch) are involved, even if we are not aware of it. However, while multisensory integration has been well studied in psychology, there is not a single platform for testing systematically the effects of different stimuli. This lack of platform results in unresolved design challenges for the design of taste-based immersive experiences. Here, we present LeviSense: the first system designed for multisensory integration in gustatory experiences based on levitated food. Our system enables the systematic exploration of different sensory effects on eating experiences. It also opens up new opportunities for other professionals (e.g., molecular gastronomy chefs) looking for innovative taste-delivery platforms. We describe the design process behind LeviSense and conduct two experiments to test a subset of the crossmodal combinations (i.e., taste and vision, taste and smell). Our results show how different lighting and smell conditions affect the perceived taste intensity, pleasantness, and satisfaction. We discuss how LeviSense creates a new technical, creative, and expressive possibilities in a series of emerging design spaces within Human-Food Interaction

    Transitioning Between Audience and Performer: Co-Designing Interactive Music Performances with Children

    Full text link
    Live interactions have the potential to meaningfully engage audiences during musical performances, and modern technologies promise unique ways to facilitate these interactions. This work presents findings from three co-design sessions with children that investigated how audiences might want to interact with live music performances, including design considerations and opportunities. Findings from these sessions also formed a Spectrum of Audience Interactivity in live musical performances, outlining ways to encourage interactivity in music performances from the child perspective

    Audio-tactile stimuli to improve health and well-being : a preliminary position paper

    Get PDF
    From literature and through common experience it is known that stimulation of the tactile (touch) sense or auditory (hearing) sense can be used to improve people's health and well-being. For example, to make people relax, feel better, sleep better or feel comforted. In this position paper we propose the concept of combined auditory-tactile stimulation and argue that it potentially has positive effects on human health and well-being through influencing a user's body and mental state. Such effects have, to date, not yet been fully explored in scientific research. The current relevant state of the art is briefly addressed and its limitations are indicated. Based on this, a vision is presented of how auditory-tactile stimulation could be used in healthcare and various other application domains. Three interesting research challenges in this field are identified: 1) identifying relevant mechanisms of human perception of combined auditory-tactile stimuli; 2) finding methods for automatic conversions between audio and tactile content; 3) using measurement and analysis of human bio-signals and behavior to adapt the stimulation in an optimal way to the user. Ideas and possible routes to address these challenges are presented

    Multisensory technology for flavor augmentation: a mini review

    Get PDF
    There is growing interest in the development of new technologies that capitalize on our emerging understanding of the multisensory influences on flavor perception in order to enhance human-food interaction design. This review focuses on the role of (extrinsic) visual, auditory, and haptic/tactile elements in modulating flavor perception and more generally, our food and drink experiences. We review some of the most exciting examples of recent multisensory technologies for augmenting such experiences. Here, we discuss applications for these technologies, for example, in the field of food experience design, in the support of healthy eating, and in the rapidly-growing world of sensory marketing. However, as the review makes clear, while there are many opportunities for novel human-food interaction design, there are also a number of challenges that will need to be tackled before new technologies can be meaningfully integrated into our everyday food and drink experiences

    Earth as Interface: Exploring chemical senses with Multisensory HCI Design for Environmental Health Communication

    Get PDF
    As environmental problems intensify, the chemical senses -that is smell and taste, are the most relevantsenses to evidence them.As such, environmental exposure vectors that can reach human beings comprise air,food, soil and water[1].Within this context, understanding the link between environmental exposures andhealth[2]is crucial to make informed choices, protect the environment and adapt to new environmentalconditions[3].Smell and taste lead therefore to multi-sensorial experiences which convey multi-layered information aboutlocal and global events[4]. However, these senses are usually absent when those problems are represented indigital systems. The multisensory HCIdesign framework investigateschemical sense inclusion withdigital systems[5]. Ongoing efforts tackledigitalization of smell and taste for digital delivery, transmission or substitution [6]. Despite experimentsproved technological feasibility, its dissemination depends on relevant applicationdevelopment[7].This thesis aims to fillthose gaps by demonstratinghow chemical senses provide the means to link environment and health based on scientific andgeolocation narratives [8], [9],[10]. We present a Multisensory HCI design process which accomplished symbolicdisplaying smell and taste and led us to a new multi-sensorial interaction system presented herein. We describe the conceptualization, design and evaluation of Earthsensum, an exploratory case study project.Earthsensumoffered to 16 participants in the study, environmental smell and taste experiences about real geolocations to participants of the study. These experiences were represented digitally using mobilevirtual reality (MVR) and mobile augmented reality (MAR). Its technologies bridge the real and digital Worlds through digital representations where we can reproduce the multi-sensorial experiences. Our study findings showed that the purposed interaction system is intuitive and can lead not only to a betterunderstanding of smell and taste perception as also of environmental problems. Participants comprehensionabout the link between environmental exposures and health was successful and they would recommend thissystem as education tools. Our conceptual design approach was validated and further developments wereencouraged.In this thesis,we demonstratehow to applyMultisensory HCI methodology to design with chemical senses. Weconclude that the presented symbolic representation model of smell and taste allows communicatingtheseexperiences on digital platforms. Due to its context-dependency, MVR and MAR platforms are adequatetechnologies to be applied for this purpose.Future developments intend to explore further the conceptual approach. These developments are centredon the use of the system to induce hopefully behaviourchange. Thisthesisopens up new application possibilities of digital chemical sense communication,Multisensory HCI Design and environmental health communication.À medida que os problemas ambientais se intensificam, os sentidos químicos -isto é, o cheiroe sabor, são os sentidos mais relevantes para evidenciá-los. Como tais, os vetores de exposição ambiental que podem atingir os seres humanos compreendem o ar, alimentos, solo e água [1]. Neste contexto, compreender a ligação entre as exposições ambientais e a saúde [2] é crucial para exercerescolhas informadas, proteger o meio ambiente e adaptar a novas condições ambientais [3]. O cheiroe o saborconduzemassima experiências multissensoriais que transmitem informações de múltiplas camadas sobre eventos locais e globais [4]. No entanto, esses sentidos geralmente estão ausentes quando esses problemas são representados em sistemas digitais. A disciplina do design de Interação Humano-Computador(HCI)multissensorial investiga a inclusão dossentidos químicos em sistemas digitais [9]. O seu foco atual residena digitalização de cheirose sabores para o envio, transmissão ou substituiçãode sentidos[10]. Apesar dasexperimentaçõescomprovarem a viabilidade tecnológica, a sua disseminação está dependentedo desenvolvimento de aplicações relevantes [11]. Estatese pretendepreencher estas lacunas ao demonstrar como os sentidos químicos explicitama interconexãoentre o meio ambiente e a saúde, recorrendo a narrativas científicas econtextualizadasgeograficamente[12], [13], [14]. Apresentamos uma metodologiade design HCImultissensorial que concretizouum sistema de representação simbólica de cheiro e sabor e nos conduziu a um novo sistema de interação multissensorial, que aqui apresentamos. Descrevemos o nosso estudo exploratório Earthsensum, que integra aconceptualização, design e avaliação. Earthsensumofereceu a 16participantes do estudo experiências ambientais de cheiro e sabor relacionadas com localizações geográficasreais. Essas experiências foram representadas digitalmente através derealidade virtual(VR)e realidade aumentada(AR).Estas tecnologias conectamo mundo real e digital através de representações digitais onde podemos reproduzir as experiências multissensoriais. Os resultados do nosso estudo provaramque o sistema interativo proposto é intuitivo e pode levar não apenas a uma melhor compreensão da perceção do cheiroe sabor, como também dos problemas ambientais. O entendimentosobre a interdependência entre exposições ambientais e saúde teve êxitoe os participantes recomendariam este sistema como ferramenta para aeducação. A nossa abordagem conceptual foi positivamentevalidadae novos desenvolvimentos foram incentivados. Nesta tese, demonstramos como aplicar metodologiasde design HCImultissensorialpara projetar com ossentidos químicos. Comprovamosque o modelo apresentado de representação simbólica do cheiroe do saborpermite comunicar essas experiênciasem plataformas digitais. Por serem dependentesdocontexto, as plataformas de aplicações emVR e AR são tecnologias adequadaspara este fim.Desenvolvimentos futuros pretendem aprofundar a nossa abordagemconceptual. Em particular, aspiramos desenvolvera aplicaçãodo sistema para promover mudanças de comportamento. Esta tese propõenovas possibilidades de aplicação da comunicação dos sentidos químicos em plataformas digitais, dedesign multissensorial HCI e de comunicação de saúde ambiental

    Body x Materials: A workshop exploring the role of material-enabled body-based multisensory experiences

    Get PDF
    Over the last 15 years, HCI and Interaction Design have experienced a “material turn” characterized by a growing interest in the materiality of technology and computation, and in methods that support exploring, envisioning, and crafting with and through materials. The community has experienced a similar turn focused on the body, on how to best design for and from a first-person, lived experience, and the moving and sensual body. In this workshop, we focus on the intersection of these two turns. The emerging developments in multimodal interfaces open opportunities to bring in materiality to the digital world as well as to transform the materiality of objects and bodies in the real-world, including the materiality of our own body. The different sensory qualities of (touchable and untouchable, physical and digital) objects and bodies, including our own, can be brought into the design of digital technologies to enrich, augment, and transform embodied experiences. In this “materials revolution” [15], what are the current theories, approaches, methods, and tools that emphasize the critical role of materiality to body-based interactions with technology? To explore this, in this workshop we will focus on five related themes: material enabling expression, material as a catalyst for human action, material enabling reflection and awareness, material enabling transformation and material supporting the design process for the re-creation of the existing and the yet-to-exist. This workshop with technology presentations, panel sessions with experts, and multidisciplinary discussions will: (i) bring together researchers who work on (re)creating sensory properties of materials through technology with those who investigate experiential effects of materials and materialenabled interactions, (ii) discuss methods, opportunities, difficulties in designing materiality and material-enabled interactions, and (iii) form a multidisciplinary community to build synergies and collaborations
    corecore