2,090 research outputs found

    Real Time Lidar and Radar High-Level Fusion for Obstacle Detection and Tracking with evaluation on a ground truth

    Get PDF
    20th International Conference on Automation, Robotics and Applications Lisbon sept 24-25, 2018— Both Lidars and Radars are sensors for obstacle detection. While Lidars are very accurate on obstacles positions and less accurate on their velocities, Radars are more precise on obstacles velocities and less precise on their positions. Sensor fusion between Lidar and Radar aims at improving obstacle detection using advantages of the two sensors. The present paper proposes a real-time Lidar/Radar data fusion algorithm for obstacle detection and tracking based on the global nearest neighbour standard filter (GNN). This algorithm is implemented and embedded in an automative vehicle as a component generated by a real-time multisensor software. The benefits of data fusion comparing with the use of a single sensor are illustrated through several tracking scenarios (on a highway and on a bend) and using real-time kinematic sensors mounted on the ego and tracked vehicles as a ground truth

    A parallel implementation of a multisensor feature-based range-estimation method

    Get PDF
    There are many proposed vision based methods to perform obstacle detection and avoidance for autonomous or semi-autonomous vehicles. All methods, however, will require very high processing rates to achieve real time performance. A system capable of supporting autonomous helicopter navigation will need to extract obstacle information from imagery at rates varying from ten frames per second to thirty or more frames per second depending on the vehicle speed. Such a system will need to sustain billions of operations per second. To reach such high processing rates using current technology, a parallel implementation of the obstacle detection/ranging method is required. This paper describes an efficient and flexible parallel implementation of a multisensor feature-based range-estimation algorithm, targeted for helicopter flight, realized on both a distributed-memory and shared-memory parallel computer

    Rock falls impacting railway tracks. Detection analysis through an artificial intelligence camera prototype

    Get PDF
    During the last few years, several approaches have been proposed to improve early warning systems for managing geological risk due to landslides, where important infrastructures (such as railways, highways, pipelines, and aqueducts) are exposed elements. In this regard, an Artificial intelligence Camera Prototype (AiCP) for real-time monitoring has been integrated in a multisensor monitoring system devoted to rock fall detection. An abandoned limestone quarry was chosen at Acuto (central Italy) as test-site for verifying the reliability of the integratedmonitoring system. A portion of jointed rockmass, with dimensions suitable for optical monitoring, was instrumented by extensometers. One meter of railway track was used as a target for fallen blocks and a weather station was installed nearby. Main goals of the test were (i) evaluating the reliability of the AiCP and (ii) detecting rock blocks that reach the railway track by the AiCP. At this aim, several experiments were carried out by throwing rock blocks over the railway track. During these experiments, the AiCP detected the blocks and automatically transmitted an alarm signal

    Real-Time Hardware-in-the-Loop Laboratory Testing for Multisensor Sense and Avoid Systems

    Get PDF
    This paper focuses on a hardware-in-the-loop facility aimed at real-time testing of architectures and algorithms of multisensor sense and avoid systems. It was developed within a research project aimed at flight demonstration of autonomous non-cooperative collision avoidance for Unmanned Aircraft Systems. In this framework, an optionally piloted Very Light Aircraft was used as experimental platform. The flight system is based on multiple-sensor data integration and it includes a Ka-band radar, four electro-optical sensors, and two dedicated processing units. The laboratory test system was developed with the primary aim of prototype validation before multi-sensor tracking and collision avoidance flight tests. System concept, hardware/software components, and operating modes are described in the paper. The facility has been built with a modular approach including both flight hardware and simulated systems and can work on the basis of experimentally tested or synthetically generated scenarios. Indeed, hybrid operating modes are also foreseen which enable performance assessment also in the case of alternative sensing architectures and flight scenarios that are hardly reproducible during flight tests. Real-time multisensor tracking results based on flight data are reported, which demonstrate reliability of the laboratory simulation while also showing the effectiveness of radar/electro-optical fusion in a non-cooperative collision avoidance architecture

    Vehicle recognition and tracking using a generic multi-sensor and multi-algorithm fusion approach

    Get PDF
    International audienceThis paper tackles the problem of improving the robustness of vehicle detection for Adaptive Cruise Control (ACC) applications. Our approach is based on a multisensor and a multialgorithms data fusion for vehicle detection and recognition. Our architecture combines two sensors: a frontal camera and a laser scanner. The improvement of the robustness stems from two aspects. First, we addressed the vision-based detection by developing an original approach based on fine gradient analysis, enhanced with a genetic AdaBoost-based algorithm for vehicle recognition. Then, we use the theory of evidence as a fusion framework to combine confidence levels delivered by the algorithms in order to improve the classification 'vehicle versus non-vehicle'. The final architecture of the system is very modular, generic and flexible in that it could be used for other detection applications or using other sensors or algorithms providing the same outputs. The system was successfully implemented on a prototype vehicle and was evaluated under real conditions and over various multisensor databases and various test scenarios, illustrating very good performances

    Flight Performance Analysis of an Image Processing Algorithm for Integrated Sense-and-Avoid Systems

    Get PDF
    This paper is focused on the development and the flight performance analysis of an image-processing technique aimed at detecting flying obstacles in airborne panchromatic images. It was developed within the framework of a research project which aims at realizing a prototypical obstacle detection and identification System, characterized by a hierarchical multisensor configuration. This configuration comprises a radar, that is, the main sensor, and four electro-optical cameras. Cameras are used as auxiliary sensors to the radar, in order to increase intruder aircraft position measurement, in terms of accuracy and data rate. The paper thoroughly describes the selection and customization of the developed image-processing techniques in order to guarantee the best results in terms of detection range, missed detection rate, and false-alarm rate. Performance is evaluated on the basis of a large amount of images gathered during flight tests with an intruder aircraft. The improvement in terms of accuracy and data rate, compared with radar-only tracking, is quantitatively demonstrated

    Develop a Multiple Interface Based Fire Fighting Robot

    Get PDF

    Real-time multisensor people tracking for human-robot spatial interaction

    Get PDF
    All currently used mobile robot platforms are able to navigate safely through their environment, avoiding static and dynamic obstacles. However, in human populated environments mere obstacle avoidance is not sufficient to make humans feel comfortable and safe around robots. To this end, a large community is currently producing human-aware navigation approaches to create a more socially acceptable robot behaviour. Amajorbuilding block for all Human-Robot Spatial Interaction is the ability of detecting and tracking humans in the vicinity of the robot. We present a fully integrated people perception framework, designed to run in real-time on a mobile robot. This framework employs detectors based on laser and RGB-D data and a tracking approach able to fuse multiple detectors using different versions of data association and Kalman filtering. The resulting trajectories are transformed into Qualitative Spatial Relations based on a Qualitative Trajectory Calculus, to learn and classify different encounters using a Hidden Markov Model based representation. We present this perception pipeline, which is fully implemented into the Robot Operating System (ROS), in a small proof of concept experiment. All components are readily available for download, and free to use under the MIT license, to researchers in all fields, especially focussing on social interaction learning by providing different kinds of output, i.e. Qualitative Relations and trajectories
    • …
    corecore