739 research outputs found

    Deep Learning for Single Image Super-Resolution: A Brief Review

    Get PDF
    Single image super-resolution (SISR) is a notoriously challenging ill-posed problem, which aims to obtain a high-resolution (HR) output from one of its low-resolution (LR) versions. To solve the SISR problem, recently powerful deep learning algorithms have been employed and achieved the state-of-the-art performance. In this survey, we review representative deep learning-based SISR methods, and group them into two categories according to their major contributions to two essential aspects of SISR: the exploration of efficient neural network architectures for SISR, and the development of effective optimization objectives for deep SISR learning. For each category, a baseline is firstly established and several critical limitations of the baseline are summarized. Then representative works on overcoming these limitations are presented based on their original contents as well as our critical understandings and analyses, and relevant comparisons are conducted from a variety of perspectives. Finally we conclude this review with some vital current challenges and future trends in SISR leveraging deep learning algorithms.Comment: Accepted by IEEE Transactions on Multimedia (TMM

    Hidden Two-Stream Convolutional Networks for Action Recognition

    Full text link
    Analyzing videos of human actions involves understanding the temporal relationships among video frames. State-of-the-art action recognition approaches rely on traditional optical flow estimation methods to pre-compute motion information for CNNs. Such a two-stage approach is computationally expensive, storage demanding, and not end-to-end trainable. In this paper, we present a novel CNN architecture that implicitly captures motion information between adjacent frames. We name our approach hidden two-stream CNNs because it only takes raw video frames as input and directly predicts action classes without explicitly computing optical flow. Our end-to-end approach is 10x faster than its two-stage baseline. Experimental results on four challenging action recognition datasets: UCF101, HMDB51, THUMOS14 and ActivityNet v1.2 show that our approach significantly outperforms the previous best real-time approaches.Comment: Accepted at ACCV 2018, camera ready. Code available at https://github.com/bryanyzhu/Hidden-Two-Strea

    Bottom-Up and Top-Down Reasoning with Hierarchical Rectified Gaussians

    Full text link
    Convolutional neural nets (CNNs) have demonstrated remarkable performance in recent history. Such approaches tend to work in a unidirectional bottom-up feed-forward fashion. However, practical experience and biological evidence tells us that feedback plays a crucial role, particularly for detailed spatial understanding tasks. This work explores bidirectional architectures that also reason with top-down feedback: neural units are influenced by both lower and higher-level units. We do so by treating units as rectified latent variables in a quadratic energy function, which can be seen as a hierarchical Rectified Gaussian model (RGs). We show that RGs can be optimized with a quadratic program (QP), that can in turn be optimized with a recurrent neural network (with rectified linear units). This allows RGs to be trained with GPU-optimized gradient descent. From a theoretical perspective, RGs help establish a connection between CNNs and hierarchical probabilistic models. From a practical perspective, RGs are well suited for detailed spatial tasks that can benefit from top-down reasoning. We illustrate them on the challenging task of keypoint localization under occlusions, where local bottom-up evidence may be misleading. We demonstrate state-of-the-art results on challenging benchmarks.Comment: To appear in CVPR 201

    Representation Learning: A Review and New Perspectives

    Full text link
    The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although specific domain knowledge can be used to help design representations, learning with generic priors can also be used, and the quest for AI is motivating the design of more powerful representation-learning algorithms implementing such priors. This paper reviews recent work in the area of unsupervised feature learning and deep learning, covering advances in probabilistic models, auto-encoders, manifold learning, and deep networks. This motivates longer-term unanswered questions about the appropriate objectives for learning good representations, for computing representations (i.e., inference), and the geometrical connections between representation learning, density estimation and manifold learning

    Spatial Learning and Action Planning in a Prefrontal Cortical Network Model

    Get PDF
    The interplay between hippocampus and prefrontal cortex (PFC) is fundamental to spatial cognition. Complementing hippocampal place coding, prefrontal representations provide more abstract and hierarchically organized memories suitable for decision making. We model a prefrontal network mediating distributed information processing for spatial learning and action planning. Specific connectivity and synaptic adaptation principles shape the recurrent dynamics of the network arranged in cortical minicolumns. We show how the PFC columnar organization is suitable for learning sparse topological-metrical representations from redundant hippocampal inputs. The recurrent nature of the network supports multilevel spatial processing, allowing structural features of the environment to be encoded. An activation diffusion mechanism spreads the neural activity through the column population leading to trajectory planning. The model provides a functional framework for interpreting the activity of PFC neurons recorded during navigation tasks. We illustrate the link from single unit activity to behavioral responses. The results suggest plausible neural mechanisms subserving the cognitive “insight” capability originally attributed to rodents by Tolman & Honzik. Our time course analysis of neural responses shows how the interaction between hippocampus and PFC can yield the encoding of manifold information pertinent to spatial planning, including prospective coding and distance-to-goal correlates

    Unsupervised Training of Deep Neural Networks for Motion Estimation

    Get PDF
    PhDThis thesis addresses the problem of motion estimation, that is, the estimation of a eld that describes how pixels move from a reference frame to a target frame, using Deep Neural Networks (DNNs). In contrast to classic methods, we don't solve an optimization problem at test time. We train DNNs once and apply it in one pass during the test which reduces the computational complexity. The major contribution is that in contrast to a supervised method, we train our DNNs in an unsupervised way. By unsupervised, we mean without the need for ground truth motion elds which are expensive to obtain for real scenes. More speci cally, we have trained our networks by designing cost functions inspired by classical optical ow estimation schemes and generative methods in Computer Vision. We rst propose a straightforward CNN method that is trained to optimize the brightness constancy constraint and we embed it in a classical multiscale scheme in order to predict motions that are large in magnitude (GradNet). We show that GradNet generalizes well to an unknown dataset and performed comparably with state-of-the-art unsupervised methods at that time. Second, we propose a convolutional Siamese architecture wherein is embedded a new soft warping scheme applied in a multiscale framework and is trained to optimize a higher-level feature constancy constraint (LikeNet). The architecture of LikeNet allows a trade-o between the computational load and memory and is 98% smaller than other SOA methods in terms of learned parameters. We show that LikeNet performs on par with SOA approaches and the best among uni-directional methods, methods that calculate motion eld in one pass. Third, we propose a novel approach to distill slower LikeNet in a much faster regression neural network without losing much of the accuracy (QLikeNet). The results show that using DNNs is a promising direction for motion estimation, although further improvements are required as classical methods yet perform the best

    An improved algorithm for learning long-term dependency problems in adaptive processing of data structures

    Get PDF
    2003-2004 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
    corecore