15,396 research outputs found

    Stochastic ordinary differential equations in applied and computational mathematics

    Get PDF
    Using concrete examples, we discuss the current and potential use of stochastic ordinary differential equations (SDEs) from the perspective of applied and computational mathematics. Assuming only a minimal background knowledge in probability and stochastic processes, we focus on aspects that distinguish SDEs from their deterministic counterparts. To illustrate a multiscale modelling framework, we explain how SDEs arise naturally as diffusion limits in the type of discrete-valued stochastic models used in chemical kinetics, population dynamics, and, most topically, systems biology. We outline some key issues in existence, uniqueness and stability that arise when SDEs are used as physical models, and point out possible pitfalls. We also discuss the use of numerical methods to simulate trajectories of an SDE and explain how both weak and strong convergence properties are relevant for highly-efficient multilevel Monte Carlo simulations. We flag up what we believe to be key topics for future research, focussing especially on nonlinear models, parameter estimation, model comparison and multiscale simulation

    Object-Oriented Paradigms for Modelling Vascular\ud Tumour Growth: a Case Study

    Get PDF
    Motivated by a family of related hybrid multiscale models, we have built an object-oriented framework for developing and implementing multiscale models of vascular tumour growth. The models are implemented in our framework as a case study to highlight how object-oriented programming techniques and good object-oriented design may be used effectively to develop hybrid multiscale models of vascular tumour growth. The intention is that this paper will serve as a useful reference for researchers modelling complex biological systems and that these researchers will employ some of the techniques presented herein in their own projects

    Multi-level agent-based modeling - A literature survey

    Full text link
    During last decade, multi-level agent-based modeling has received significant and dramatically increasing interest. In this article we present a comprehensive and structured review of literature on the subject. We present the main theoretical contributions and application domains of this concept, with an emphasis on social, flow, biological and biomedical models.Comment: v2. Ref 102 added. v3-4 Many refs and text added v5-6 bibliographic statistics updated. v7 Change of the name of the paper to reflect what it became, many refs and text added, bibliographic statistics update

    Data-driven modelling of biological multi-scale processes

    Full text link
    Biological processes involve a variety of spatial and temporal scales. A holistic understanding of many biological processes therefore requires multi-scale models which capture the relevant properties on all these scales. In this manuscript we review mathematical modelling approaches used to describe the individual spatial scales and how they are integrated into holistic models. We discuss the relation between spatial and temporal scales and the implication of that on multi-scale modelling. Based upon this overview over state-of-the-art modelling approaches, we formulate key challenges in mathematical and computational modelling of biological multi-scale and multi-physics processes. In particular, we considered the availability of analysis tools for multi-scale models and model-based multi-scale data integration. We provide a compact review of methods for model-based data integration and model-based hypothesis testing. Furthermore, novel approaches and recent trends are discussed, including computation time reduction using reduced order and surrogate models, which contribute to the solution of inference problems. We conclude the manuscript by providing a few ideas for the development of tailored multi-scale inference methods.Comment: This manuscript will appear in the Journal of Coupled Systems and Multiscale Dynamics (American Scientific Publishers

    An integrative computational model for intestinal tissue renewal

    Get PDF
    Objectives\ud \ud The luminal surface of the gut is lined with a monolayer of epithelial cells that acts as a nutrient absorptive engine and protective barrier. To maintain its integrity and functionality, the epithelium is renewed every few days. Theoretical models are powerful tools that can be used to test hypotheses concerning the regulation of this renewal process, to investigate how its dysfunction can lead to loss of homeostasis and neoplasia, and to identify potential therapeutic interventions. Here we propose a new multiscale model for crypt dynamics that links phenomena occurring at the subcellular, cellular and tissue levels of organisation.\ud \ud Methods\ud \ud At the subcellular level, deterministic models characterise molecular networks, such as cell-cycle control and Wnt signalling. The output of these models determines the behaviour of each epithelial cell in response to intra-, inter- and extracellular cues. The modular nature of the model enables us to easily modify individual assumptions and analyse their effects on the system as a whole.\ud \ud Results\ud \ud We perform virtual microdissection and labelling-index experiments, evaluate the impact of various model extensions, obtain new insight into clonal expansion in the crypt, and compare our predictions with recent mitochondrial DNA mutation data. \ud \ud Conclusions\ud \ud We demonstrate that relaxing the assumption that stem-cell positions are fixed enables clonal expansion and niche succession to occur. We also predict that the presence of extracellular factors near the base of the crypt alone suffices to explain the observed spatial variation in nuclear beta-catenin levels along the crypt axis

    On the foundations of cancer modelling: selected topics, speculations, & perspectives

    Get PDF
    This paper presents a critical review of selected topics related to the modelling of cancer onset, evolution and growth, with the aim of illustrating, to a wide applied mathematical readership, some of the novel mathematical problems in the field. This review attempts to capture, from the appropriate literature, the main issues involved in the modelling of phenomena related to cancer dynamics at all scales which characterise this highly complex system: from the molecular scale up to that of tissue. The last part of the paper discusses the challenge of developing a mathematical biological theory of tumour onset and evolution

    Multiscale modelling of tumour growth and therapy: the influence of vessel normalisation on chemotherapy

    Get PDF
    Following the poor clinical results of antiangiogenic drugs, particularly when applied in isolation, tumour biologists and clinicians are now turning to combinations of therapies in order to obtain better results. One of these involves vessel normalisation strategies. In this paper, we investigate the effects on tumour growth of combinations of antiangiogenic and standard cytotoxic drugs, taking into account vessel normalisation. An existing multiscale framework is extended to include new elements such as tumour-induced vessel dematuration. Detailed simulations of our multiscale framework allow us to suggest one possible mechanism for the observed vessel normalisation-induced improvement in the efficacy of cytotoxic drugs: vessel dematuration produces extensive regions occupied by quiescent (oxygen-starved) cells which the cytotoxic drug fails to kill. Vessel normalisation reduces the size of these regions, thereby allowing the chemotherapeutic agent to act on a greater number of cells

    Preface

    Get PDF
    n/
    corecore