11 research outputs found

    HDGlab: An Open-Source Implementation of the Hybridisable Discontinuous Galerkin Method in MATLAB

    Get PDF
    This paper presents HDGlab, an open source MATLAB implementation of the hybridisable discontinuous Galerkin (HDG) method. The main goal is to provide a detailed description of both the HDG method for elliptic problems and its implementation available in HDGlab. Ultimately, this is expected to make this relatively new advanced discretisation method more accessible to the computational engineering community. HDGlab presents some features not available in other implementations of the HDG method that can be found in the free domain. First, it implements high-order polynomial shape functions up to degree nine, with both equally-spaced and Fekete nodal distributions. Second, it supports curved isoparametric simplicial elements in two and three dimensions. Third, it supports non-uniform degree polynomial approximations and it provides a flexible structure to devise degree adaptivity strategies. Finally, an interface with the open-source high-order mesh generator Gmsh is provided to facilitate its application to practical engineering problems

    Adaptive multiscale model reduction with Generalized Multiscale Finite Element Methods

    Get PDF
    In this paper, we discuss a general multiscale model reduction framework based on multiscale finite element methods. We give a brief overview of related multiscale methods. Due to page limitations, the overview focuses on a few related methods and is not intended to be comprehensive. We present a general adaptive multiscale model reduction framework, the Generalized Multiscale Finite Element Method. Besides the method's basic outline, we discuss some important ingredients needed for the method's success. We also discuss several applications. The proposed method allows performing local model reduction in the presence of high contrast and no scale separation

    Some Applications of the Generalized Multiscale Finite Element Method

    Get PDF
    Many materials in nature are highly heterogeneous and their properties can vary at different scales. Direct numerical simulations in such multiscale media are prohibitively expensive and some types of model reduction are needed. Typical model reduction techniques include upscaling and multiscale methods. In upscaling methods, one upscales the multiscale media properties so that the problem can be solved on a coarse grid. In multiscale method, one constructs multiscale basis functions that capture media information and solves the problem on the coarse grid. Generalized Multiscale Finite Element Method (GMsFEM) is a recently proposed model reduction technique and has been used for various practical applications. This method has no assumption about the media properties, which can have any type of complicated structure. In GMsFEM, we first create a snapshot space, and then solve a carefully chosen eigenvalue problem to form the offline space. One can also construct online space for the parameter dependent problems. It is shown theoretically and numerically that the GMsFEM is very efficient for the heterogeneous problems involving high-contrast, no-scale separation. In this dissertation, we apply the GMsFEM to perform model reduction for the steady state elasticity equations in highly heterogeneous media though some of our applications are motivated by elastic wave propagation in subsurface. We will consider three kinds of coupling mechanism for different situations. For more practical purposes, we will also study the applications of the GMsFEM for the frequency domain acoustic wave equation and the Reverse Time Migration (RTM) based on the time domain acoustic wave equation

    The multiscale hybrid mixed method in general polygonal meshes

    Get PDF
    This work extends the general form of the Multiscale Hybrid-Mixed (MHM) method for the second-order Laplace (Darcy) equation to general non-conforming polygonal meshes. The main properties of the MHM method, i.e., stability, optimal convergence, and local conservation, are proven independently of the geometry of the elements used for the first level mesh. More precisely, it is proven that piecewise polynomials of degree k and k+1, k 0, for the Lagrange multipliers (flux), along with continuous piecewise polynomial interpolations of degree k+1 posed on second-level sub-meshes are stable if the latter is fine enough with respect to the mesh for the Lagrange multiplier. We provide an explicit sufficient condition for this restriction. Also, we prove that the error converges with order k +1 and k +2 in the broken H1 and L2 norms, respectively, under usual regularity assumptions, and that such estimates also hold for non-convex; or even non-simply connected elements. Numerical results confirm the theoretical findings and illustrate the gain that the use of multiscale functions provides

    SOLID-SHELL FINITE ELEMENT MODELS FOR EXPLICIT SIMULATIONS OF CRACK PROPAGATION IN THIN STRUCTURES

    Get PDF
    Crack propagation in thin shell structures due to cutting is conveniently simulated using explicit finite element approaches, in view of the high nonlinearity of the problem. Solidshell elements are usually preferred for the discretization in the presence of complex material behavior and degradation phenomena such as delamination, since they allow for a correct representation of the thickness geometry. However, in solid-shell elements the small thickness leads to a very high maximum eigenfrequency, which imply very small stable time-steps. A new selective mass scaling technique is proposed to increase the time-step size without affecting accuracy. New ”directional” cohesive interface elements are used in conjunction with selective mass scaling to account for the interaction with a sharp blade in cutting processes of thin ductile shells

    POD-DEIM Global-Local Model Reduction for Multi-phase Flows in Heterogeneous Porous Media

    Get PDF
    Many applications such as production optimization and reservoir management are computationally demanding due to a large number of forward simulations. Typically, each forward simulation involves multiple scales and is computationally expensive. The main objective of this dissertation is to develop and apply both local and global model-order reduction techniques to facilitate subsurface flow modeling. We develop a POD-DEIM global model reduction method for multi-phase flow simulation. The approach entails the use of Proper Orthogonal Decomposition (POD)-Galerkin projection, and Discrete Empirical Interpolation Method (DEIM). POD technique constructs a small POD subspace spanned by a set of global basis that can approximate the solution space. The reduced system is set up by projecting the full-order system onto the POD subspace. Discrete Empirical Interpolation Method (DEIM) is used to reduce the nonlinear terms in the system. DEIM overcomes the shortcomings of POD in the case of nonlinear PDEs by retaining nonlinearities in a lower dimensional space. The POD-DEIM global reduction method enjoys the merit of significant complexity reduction. We also propose an online adaptive global-local POD-DEIM model reduction method. This unique global-local online combination allows (1) developing local indicators that are used for both local and global updates; (2) computing global online modes via local multiscale basis functions. The multiscale basis functions consist of offline and some online local basis functions. The main contribution of the method is that the criteria for adaptivity and the construction of the global online modes are based on local error indicators and local multiscale basis functions which can be cheaply computed. The approach is particularly useful for situations where one needs to solve the reduced system for inputs or controls that result in a solution outside the span of the snapshots generated in the offline stage. Another aspect of my dissertation is the development of a local model reduction method for multiscale problems. We use global coupling in the coarse grid level via the mortar framework to link the sub-grid variations of neighboring coarse regions. The mortar framework offers some advantages, such as the flexibility in the constructions of the coarse grid and sub-grid capturing tools. By following the framework of the Generalized Multiscale Finite Element Method (GMsFEM), we design an enriched multiscale mortar space. Using the proposed multiscale mortar space, we (1) construct a multiscale finite element method to solve the flow problem on a coarse grid; (2) design two-level preconditioners as exact solver for the flow problem

    Reactive Flows in Deformable, Complex Media

    Get PDF
    Many processes of highest actuality in the real life are described through systems of equations posed in complex domains. Of particular interest is the situation when the domain is changing in time, undergoing deformations that depend on the unknown quantities of the model. Such kind of problems are encountered as mathematical models in the subsurface, material science, or biological systems.The emerging mathematical models account for various processes at different scales, and the key issue is to integrate the domain deformation in the multi-scale context. The focus in this workshop was on novel techniques and ideas in the mathematical modelling, analysis, the numerical discretization and the upscaling of problems as described above

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal
    corecore