16,897 research outputs found

    Coronal Mass Ejection Detection using Wavelets, Curvelets and Ridgelets: Applications for Space Weather Monitoring

    Full text link
    Coronal mass ejections (CMEs) are large-scale eruptions of plasma and magnetic feld that can produce adverse space weather at Earth and other locations in the Heliosphere. Due to the intrinsic multiscale nature of features in coronagraph images, wavelet and multiscale image processing techniques are well suited to enhancing the visibility of CMEs and supressing noise. However, wavelets are better suited to identifying point-like features, such as noise or background stars, than to enhancing the visibility of the curved form of a typical CME front. Higher order multiscale techniques, such as ridgelets and curvelets, were therefore explored to characterise the morphology (width, curvature) and kinematics (position, velocity, acceleration) of CMEs. Curvelets in particular were found to be well suited to characterising CME properties in a self-consistent manner. Curvelets are thus likely to be of benefit to autonomous monitoring of CME properties for space weather applications.Comment: Accepted for publication in Advances in Space Research (3 April 2010

    Investigating the Kinematics of Coronal Mass Ejections with the Automated CORIMP Catalog

    Full text link
    Studying coronal mass ejections (CMEs) in coronagraph data can be challenging due to their diffuse structure and transient nature, compounded by the variations in their dynamics, morphology, and frequency of occurrence. The large amounts of data available from missions like the Solar and Heliospheric Observatory (SOHO) make manual cataloging of CMEs tedious and prone to human error, and so a robust method of detection and analysis is required and often preferred. A new coronal image processing catalog called CORIMP has been developed in an effort to achieve this, through the implementation of a dynamic background separation technique and multiscale edge detection. These algorithms together isolate and characterise CME structure in the field-of-view of the Large Angle Spectrometric Coronagraph (LASCO) onboard SOHO. CORIMP also applies a Savitzky-Golay filter, along with quadratic and linear fits, to the height-time measurements for better revealing the true CME speed and acceleration profiles across the plane-of-sky. Here we present a sample of new results from the CORIMP CME catalog, and directly compare them with the other automated catalogs of Computer Aided CME Tracking (CACTus) and Solar Eruptive Events Detection System (SEEDS), as well as the manual CME catalog at the Coordinated Data Analysis Workshop (CDAW) Data Center and a previously published study of the sample events. We further investigate a form of unsupervised machine learning by using a k-means clustering algorithm to distinguish detections of multiple CMEs that occur close together in space and time. While challenges still exist, this investigation and comparison of results demonstrates the reliability and robustness of the CORIMP catalog, proving its effectiveness at detecting and tracking CMEs throughout the LASCO dataset.Comment: 23 pages, 11 figures, 1 tabl

    The Multiscale Morphology Filter: Identifying and Extracting Spatial Patterns in the Galaxy Distribution

    Get PDF
    We present here a new method, MMF, for automatically segmenting cosmic structure into its basic components: clusters, filaments, and walls. Importantly, the segmentation is scale independent, so all structures are identified without prejudice as to their size or shape. The method is ideally suited for extracting catalogues of clusters, walls, and filaments from samples of galaxies in redshift surveys or from particles in cosmological N-body simulations: it makes no prior assumptions about the scale or shape of the structures.}Comment: Replacement with higher resolution figures. 28 pages, 17 figures. For Full Resolution Version see: http://www.astro.rug.nl/~weygaert/tim1publication/miguelmmf.pd

    Fast Detection of Curved Edges at Low SNR

    Full text link
    Detecting edges is a fundamental problem in computer vision with many applications, some involving very noisy images. While most edge detection methods are fast, they perform well only on relatively clean images. Indeed, edges in such images can be reliably detected using only local filters. Detecting faint edges under high levels of noise cannot be done locally at the individual pixel level, and requires more sophisticated global processing. Unfortunately, existing methods that achieve this goal are quite slow. In this paper we develop a novel multiscale method to detect curved edges in noisy images. While our algorithm searches for edges over a huge set of candidate curves, it does so in a practical runtime, nearly linear in the total number of image pixels. As we demonstrate experimentally, our algorithm is orders of magnitude faster than previous methods designed to deal with high noise levels. Nevertheless, it obtains comparable, if not better, edge detection quality on a variety of challenging noisy images.Comment: 9 pages, 11 figure
    corecore