97 research outputs found

    Graph Signal Processing: Overview, Challenges and Applications

    Full text link
    Research in Graph Signal Processing (GSP) aims to develop tools for processing data defined on irregular graph domains. In this paper we first provide an overview of core ideas in GSP and their connection to conventional digital signal processing. We then summarize recent developments in developing basic GSP tools, including methods for sampling, filtering or graph learning. Next, we review progress in several application areas using GSP, including processing and analysis of sensor network data, biological data, and applications to image processing and machine learning. We finish by providing a brief historical perspective to highlight how concepts recently developed in GSP build on top of prior research in other areas.Comment: To appear, Proceedings of the IEE

    Diffusion maps tailored to arbitrary non-degenerate Ito processes

    Get PDF
    We present two generalizations of the popular diffusion maps algorithm. The first generalization replaces the drift term in diffusion maps, which is the gradient of the sampling density, with the gradient of an arbitrary density of interest which is known up to a normalization constant. The second generalization allows for a diffusion map type approximation of the forward and backward generators of general Ito diffusions with given drift and diffusion coefficients. We use the local kernels introduced by Berry and Sauer, but allow for arbitrary sampling densities. We provide numerical illustrations to demonstrate that this opens up many new applications for diffusion maps as a tool to organize point cloud data, including biased or corrupted samples, dimension reduction for dynamical systems, detection of almost invariant regions in flow fields, and importance sampling

    Perturbation of the Eigenvectors of the Graph Laplacian: Application to Image Denoising

    Full text link
    The original contributions of this paper are twofold: a new understanding of the influence of noise on the eigenvectors of the graph Laplacian of a set of image patches, and an algorithm to estimate a denoised set of patches from a noisy image. The algorithm relies on the following two observations: (1) the low-index eigenvectors of the diffusion, or graph Laplacian, operators are very robust to random perturbations of the weights and random changes in the connections of the patch-graph; and (2) patches extracted from smooth regions of the image are organized along smooth low-dimensional structures in the patch-set, and therefore can be reconstructed with few eigenvectors. Experiments demonstrate that our denoising algorithm outperforms the denoising gold-standards

    Level set and PDE methods for visualization

    Get PDF
    Notes from IEEE Visualization 2005 Course #6, Minneapolis, MN, October 25, 2005. Retrieved 3/16/2006 from http://www.cs.drexel.edu/~david/Papers/Viz05_Course6_Notes.pdf.Level set methods, an important class of partial differential equation (PDE) methods, define dynamic surfaces implicitly as the level set (isosurface) of a sampled, evolving nD function. This course is targeted for researchers interested in learning about level set and other PDE-based methods, and their application to visualization. The course material will be presented by several of the recognized experts in the field, and will include introductory concepts, practical considerations and extensive details on a variety of level set/PDE applications. The course will begin with preparatory material that introduces the concept of using partial differential equations to solve problems in visualization. This will include the structure and behavior of several different types of differential equations, e.g. the level set, heat and reaction-diffusion equations, as well as a general approach to developing PDE-based applications. The second stage of the course will describe the numerical methods and algorithms needed to implement the mathematics and methods presented in the first stage, including information on implementing the algorithms on GPUs. Throughout the course the technical material will be tied to applications, e.g. image processing, geometric modeling, dataset segmentation, model processing, surface reconstruction, anisotropic geometric diffusion, flow field post-processing and vector visualization. Prerequisites: Knowledge of calculus, linear algebra, computer graphics, visualization, geometric modeling and computer vision. Some familiarity with differential geometry, differential equations, numerical computing and image processing is strongly recommended, but not required
    corecore