396 research outputs found

    Multiscale modeling of granular flows with application to crowd dynamics

    Full text link
    In this paper a new multiscale modeling technique is proposed. It relies on a recently introduced measure-theoretic approach, which allows to manage the microscopic and the macroscopic scale under a unique framework. In the resulting coupled model the two scales coexist and share information. This allows to perform numerical simulations in which the trajectories and the density of the particles affect each other. Crowd dynamics is the motivating application throughout the paper.Comment: 30 pages, 9 figure

    Multiscale modeling of granular flows with application to crowd dynamics

    Full text link
    In this paper a new multiscale modeling technique is proposed. It relies on a recently introduced measure-theoretic approach, which allows to manage the microscopic and the macroscopic scale under a unique framework. In the resulting coupled model the two scales coexist and share information. This allows to perform numerical simulations in which the trajectories and the density of the particles affect each other. Crowd dynamics is the motivating application throughout the paper.Comment: 30 pages, 9 figure

    From individual behaviour to an evaluation of the collective evolution of crowds along footbridges

    Full text link
    This paper proposes a crowd dynamic macroscopic model grounded on microscopic phenomenological observations which are upscaled by means of a formal mathematical procedure. The actual applicability of the model to real world problems is tested by considering the pedestrian traffic along footbridges, of interest for Structural and Transportation Engineering. The genuinely macroscopic quantitative description of the crowd flow directly matches the engineering need of bulk results. However, three issues beyond the sole modelling are of primary importance: the pedestrian inflow conditions, the numerical approximation of the equations for non trivial footbridge geometries, and the calibration of the free parameters of the model on the basis of in situ measurements currently available. These issues are discussed and a solution strategy is proposed.Comment: 23 pages, 10 figures in J. Engrg. Math., 201

    How can macroscopic models reveal self-organization in traffic flow?

    Full text link
    In this paper we propose a new modeling technique for vehicular traffic flow, designed for capturing at a macroscopic level some effects, due to the microscopic granularity of the flow of cars, which would be lost with a purely continuous approach. The starting point is a multiscale method for pedestrian modeling, recently introduced in Cristiani et al., Multiscale Model. Simul., 2011, in which measure-theoretic tools are used to manage the microscopic and the macroscopic scales under a unique framework. In the resulting coupled model the two scales coexist and share information, in the sense that the same system is simultaneously described from both a discrete (microscopic) and a continuous (macroscopic) perspective. This way it is possible to perform numerical simulations in which the single trajectories and the average density of the moving agents affect each other. Such a method is here revisited in order to deal with multi-population traffic flow on networks. For illustrative purposes, we focus on the simple case of the intersection of two roads. By exploiting one of the main features of the multiscale method, namely its dimension-independence, we treat one-dimensional roads and two-dimensional junctions in a natural way, without referring to classical network theory. Furthermore, thanks to the coupling between the microscopic and the macroscopic scales, we model the continuous flow of cars without losing the right amount of granularity, which characterizes the real physical system and triggers self-organization effects, such as, for example, the oscillatory patterns visible at jammed uncontrolled crossroads.Comment: 7 pages, 7 figure

    Mean-Field Sparse Optimal Control

    Full text link
    We introduce the rigorous limit process connecting finite dimensional sparse optimal control problems with ODE constraints, modeling parsimonious interventions on the dynamics of a moving population divided into leaders and followers, to an infinite dimensional optimal control problem with a constraint given by a system of ODE for the leaders coupled with a PDE of Vlasov-type, governing the dynamics of the probability distribution of the followers. In the classical mean-field theory one studies the behavior of a large number of small individuals freely interacting with each other, by simplifying the effect of all the other individuals on any given individual by a single averaged effect. In this paper we address instead the situation where the leaders are actually influenced also by an external policy maker, and we propagate its effect for the number NN of followers going to infinity. The technical derivation of the sparse mean-field optimal control is realized by the simultaneous development of the mean-field limit of the equations governing the followers dynamics together with the Γ\Gamma-limit of the finite dimensional sparse optimal control problems.Comment: arXiv admin note: text overlap with arXiv:1306.591

    Modeling, Evaluation, and Scale on Artificial Pedestrians: A Literature Review

    Get PDF
    Modeling pedestrian dynamics and their implementation in a computer are challenging and important issues in the knowledge areas of transportation and computer simulation. The aim of this article is to provide a bibliographic outlook so that the reader may have quick access to the most relevant works related to this problem. We have used three main axes to organize the article's contents: pedestrian models, validation techniques, and multiscale approaches. The backbone of this work is the classification of existing pedestrian models; we have organized the works in the literature under five categories, according to the techniques used for implementing the operational level in each pedestrian model. Then the main existing validation methods, oriented to evaluate the behavioral quality of the simulation systems, are reviewed. Furthermore, we review the key issues that arise when facing multiscale pedestrian modeling, where we first focus on the behavioral scale (combinations of micro and macro pedestrian models) and second on the scale size (from individuals to crowds). The article begins by introducing the main characteristics of walking dynamics and its analysis tools and concludes with a discussion about the contributions that different knowledge fields can make in the near future to this exciting area

    Macroscopic modeling and simulations of room evacuation

    Full text link
    We analyze numerically two macroscopic models of crowd dynamics: the classical Hughes model and the second order model being an extension to pedestrian motion of the Payne-Whitham vehicular traffic model. The desired direction of motion is determined by solving an eikonal equation with density dependent running cost, which results in minimization of the travel time and avoidance of congested areas. We apply a mixed finite volume-finite element method to solve the problems and present error analysis for the eikonal solver, gradient computation and the second order model yielding a first order convergence. We show that Hughes' model is incapable of reproducing complex crowd dynamics such as stop-and-go waves and clogging at bottlenecks. Finally, using the second order model, we study numerically the evacuation of pedestrians from a room through a narrow exit.Comment: 22 page
    corecore