390 research outputs found

    Computational models for the simulation of turbulent poly-dispersed flows: Large Eddy Simulation and Quadrature-Based Moment Method

    Get PDF
    This work focuses on the development of efficient computational tools for the simulation of turbulent multiphase polydispersed flows. In terms of methodologies we focus here on the use of Large Eddy Simulation (LES) and Quadrature-Based Methods of Moments (QBMM). In terms of applications the work is finalised, in order to be applied in the future, to particle production processes (precipitation and crystallisation in particular). An important part of the work concerns the study of the flow field in a Confined Impinging Jets Reactor (CIJR), frequently used in particle production processes. The first part is limited to the comparison and analysis of micro Particle Image Velocimetry (μPIV) experiments, carried out in a previous work, and Direct Numerical Simulation (DNS), carried out in this thesis. In particular the effects of boundary and operating conditions are studied and the numerical simulations are used to understand the experimental predictions and demonstrate the importance of unavoidable fluctuations in the experimental inlets. This represents a preparatory work for the LES modelling of the CIJR. Before investigating the accuracy of LES predictions for this particular application, the model and the implementation are studied in a more general context, represented by a well-known test case such as the periodic turbulent channel flow: the LES model implementation in TransAT, the code used in this work, is compared with DNS data and with predictions of other codes. LES simulations for the CIJR, provided with the proper boundary conditions obtained by the previous DNS/μPIV study, are then performed and compared with experiments, validating the model in a more realistic test case. Since particle precipitation and crystallization often result in complex interactions between particles and the continuous phase, in the second part of the work particular attention has been paid in the modelling of the momentum transfer and the resulting velocity of the particles (relative to the fluid). In particular the possibility of describing poly-disperse fluid-solid systems with QBMM together with LES and Equilibrium Eulerian Model (EEM) is assessed. The study is performed by comparing our predictions with DNS Lagrangian data in the turbulent channel flow previously described, seeded with particles corresponding to a realistic Particle Size Distribution (PSD). The last part of the work deals with particle collisions, extending QBMM to the investigation of non-equilibrium flows governed by the Boltzmann Equation with a hard-sphere collision kernel. The evolution of the particle velocity distribution is predicted and compared with other methods for kinetic equations such as Lattice Boltzmann Method (LBM), Discrete Velocity Method (DVM) and Grad’s Moment Method (GM). The overall results of this thesis can be extended to a broad range of other applications of single-phase, dispersed multiphase and non-equilibrium flows

    A three-scale model of spatio-temporal bursting

    Get PDF
    © 2016 Society for Industrial and Applied Mathematics. We study spatio-temporal bursting in a three-scale reaction diffusion equation organized by the winged cusp singularity. For large time-scale separation the model exhibits traveling bursts, whereas for large space-scale separation the model exhibits standing bursts. Both behaviors exhibit a common singular skeleton, whose geometry is fully determined by persistent bifurcation diagrams of the winged cusp. The modulation of spatio-temporal bursting in such a model naturally translates into paths in the universal unfolding of the winged cusp.The research leading to these results has received funding from the European Research Council under the Advanced ERC Grant Agreement Switchlet 670645 and from DGAPA-Universidad Nacional Aut onoma de Mexico under the PAPIIT Grant IA105816

    On the use of blow up to study regularizations of singularities of piecewise smooth dynamical systems in R3\mathbb{R}^3

    Get PDF
    In this paper we use the blow up method of Dumortier and Roussarie \cite{dumortier_1991,dumortier_1993,dumortier_1996}, in the formulation due to Krupa and Szmolyan \cite{krupa_extending_2001}, to study the regularization of singularities of piecewise smooth dynamical systems \cite{filippov1988differential} in R3\mathbb R^3. Using the regularization method of Sotomayor and Teixeira \cite{Sotomayor96}, first we demonstrate the power of our approach by considering the case of a fold line. We quickly recover a main result of Bonet and Seara \cite{reves_regularization_2014} in a simple manner. Then, for the two-fold singularity, we show that the regularized system only fully retains the features of the singular canards in the piecewise smooth system in the cases when the sliding region does not include a full sector of singular canards. In particular, we show that every locally unique primary singular canard persists the regularizing perturbation. For the case of a sector of primary singular canards, we show that the regularized system contains a canard, provided a certain non-resonance condition holds. Finally, we provide numerical evidence for the existence of secondary canards near resonance.Comment: To appear in SIAM Journal of Applied Dynamical System

    A novel model for one-dimensional morphoelasticity. Part I - Theoretical foundations

    Get PDF
    While classical continuum theories of elasticity and viscoelasticity have long been used to describe the mechanical behaviour of solid biological tissues, they are of limited use for the description of biological tissues that undergo continuous remodelling. The structural changes to a soft tissue associated with growth and remodelling require a mathematical theory of ‘morphoelasticity’ that is more akin to plasticity than elasticity. However, previously-derived mathematical models for plasticity are difficult to apply and interpret in the context of growth and remodelling: many important concepts from the theory of plasticity do not have simple analogues in biomechanics.\ud \ud In this work, we describe a novel mathematical model that combines the simplicity and interpretability of classical viscoelastic models with the versatility of plasticity theory. While our focus here is on one-dimensional problems, our model builds on earlier work based on the multiplicative decomposition of the deformation gradient and can be adapted to develop a three-dimensional theory. The foundation of this work is the concept of ‘effective strain’, a measure of the difference between the current state and a hypothetical state where the tissue is mechanically relaxed. We develop one-dimensional equations for the evolution of effective strain, and discuss a number of potential applications of this theory. One significant application is the description of a contracting fibroblast-populated collagen lattice, which we further investigate in Part II
    corecore